
The International Journal of Virtual Reality, 2006, 5(2):67-72 

 

67
 

    
 

A Hierarchical 3D Data Rendering  
System Synchronized with HTML 

Yousuke Kimura, Tomohiro Mashita, Atsushi Nakazawa, Takashi Machida, 
 Kiyoshi Kiyokawa and Haruo Takemura 

 
Abstract— We propose a new rendering system for large-scale, 

3D geometic data that can be used with web-based content 
man-agement systems (CMS). To achieve this, we employed a 
geometry hierarchical encoding method “QSplat” and 
implemented this in a Java and JOGL (Java bindings of 
OpenGL) environment. Users can view large-scale geometric 
data using conventional HTML browsers with a non-powerful 
CPU and low-speed networks. Further, this system is 
independent of the platforms. We add new functionalities so that 
users can easily understand the geometric data: Annotations and 
HTML Synchronization. Users can see the geometric data with 
the associated annotations that describe the names or the 
detailed explanations of the particular portions. The HTML 
Synchronization enables users to smoothly and interactively 
switch our rendering system and HTML contents. The 
experimental results show that our system performs an 
interactive frame rate even for a large-scale data whereas other 
systems cannot render them.  

Index Terms —CMS, 3Ddata, Annotation, HTML synchro 
-nization  

 
I. INTRODUCTION 

The widely used World Wide Web provides many types of 
information including texts, sounds and 2D images for various 
purposes. These sorts of multimedia data are very helpful to 
enrich contents and enhance users’ experiences.  

Use of 3D geometric data is an effective method for 
understanding contents because users can browse them from 
arbitrary viewpoints. Our goal is to develop a 3D geometric 
data browser along with user interfaces for the purpose of 
web-based contents management systems (CMS) into World 
Wide Web. Our browser can render large-scale geometric data 
very quickly even on not so powerful user terminals. We 
designed this system to compensate for three issues.  

First, this software should work independently of users’ 
hardware and software environments. Previous solutions have 
needed additional plug-in software to render 3D geometric 
data, thus users had to install the software in advance. 
Additionally, this sorts of plug-in software can not always be 
ported to all platforms. To resolve this issue, we developed 
our software as a Java applet so that it would work on any 
platform including mobile terminals.  

The next issue is the rendering performance. Compared to 
texts or images, rendering 3D geometry requires much 
computation cost, in particular for rendering large-scale  
 

 
Manuscript Received on August 20, 2006. 

  The authors are with Osaka University. Prof Haruo Takemura can be 
contacted at E-mail: takemura@cmc.osaka-u.ac.jp  

 
geometric data. Further, our system must work at a frame rate 
in any environment from desktop PCs to mobile terminals. 
For this issue, we introduce a hierarchical geometry encoding 
method “QSplat [1]” as a 3D geometry format. With the 
QSplat rendering system, we can adjust the image quality of 
the rendered 3D model and its frame rate according to the 
terminal’s environment and users’ interactions.  

The third issue is the synchronization between the 
geometric data and other data in CMS. Because we want to 
use 3D geometric data as multimedia data in web-based CMS, 
the objects’ locations or objects’ portions in the data should be 
associated with other information, such as texts or sounds in 
the CMS database. Therefore, we develop a method to draw 
annotations at the particular positions of the objects, and for 
HTML synchronization functions. Annotations show names 
and details onto the geometric data, and HTML 
synchronization offers user’s much interactive browsing 
experience between the 3D object and the HTML browsers. If 
users click the links in the HTML browser, the viewing 
position in the 3D geometric data browser smoothly moves to 
the particular position. On the other hand, when annotations in 
the 3D geometric data browser are clicked, the associated 
HTML or other multimedia data are activated and users can 
smoothly see and hear a detail description of the portion.  

Several solutions, such as VRML, have been proposed to 
show 3D data in web browsers, called Web3D. But these 
usually cannot be applied when the objects are complicated, 
because the size of such data is enlarged by a complicated 3D 
geometric object and it is hard to render in an interactive 
frame rate. Several commercial Web3D technologies, such as 
Cult3D [2], Viewpoint [3], Shockwave 3D [4] solve the data 
size problem and have various functions for more effective 
rendering or animation.  

Point-based rendering is more useful than polygon-based 
rendering in cases where the shape of the 3D object is 
complex [5]. Here, the model is assumed to be of a lot of 
points of various sizes. These sorts of rendering method can 
easily introduce multi-resolution rendering, which enables 
dynamic changes in the resolution of models while the 
rendering procedure proceeds. QSplat, Surfels[6], and several 
other systems[7,8,9] are examples of the point-based 
rendering methods. On our approach, we employed the QSplat 
method for rendering and data transmission.  

In the reminder of this paper, we first give an overview of 
our systems in Sect.II. Next, we describe QSplat, on which we 
base our rendering system, in Sect.III. We explain the way of 
storing and rendering annotations in Sect. IV. In Sect. V, we 
present an example of synchronization of object rendering and 



The International Journal of Virtual Reality, 2006, 5(2):67-72 
 

 

68

HTML browsers. The experimental results are shown in Sect. 
VI. Finally, we show applications of our method and give 

 

conclusions in Sect. VII and Sect. VIII respectively. 

 
 

Fig. 1. Architecture of our rendering system. First the user’s terminal 
downloads QSplat Applet with web browser. Then the QSplat applet loads a 

QSplat File and Annotation Files and renders the 3D model with JOGL. 

 
Fig. 2. QSplat data is constructed as a tree structure. Higher level nodes 

correspond to a rough geometric structure and lower level nodes correspond to 
the details. 

 
II. SYSTEM OVERVIEW 

The architecture of our system is shown in Fig. 1. This 
system works on a web browser, Java Virtual Machine (JVM) 
and JOGL (Java Bindings for OpenGL) [10]. First, the web 
browser downloads the html file and applet. The applet loads 
the 3D data (QSplat file) and annotation files from the server, 
then it renders the 3D model using JOGL.  

The annotation files manage information such as annotation 
IDs and descriptions, or relationships to the 3D model. 
Anno-tation IDs are used in both HTML (JavaScript) and the 
Java applet for HTML synchronization. The description can 
contain various information including words, sentences, 
hyperlinks or numerical data. The field is used not only for text 
but also for hyperlinks of sound data or viewing position and 
directions.  

 
III. QSPLAT RENDERING  

QSplat is a kind of point-based rendering system. The object 
is expressed as a set of the points (SPLATs) of various sizes.  

Each splat is defined by the parameters of; center position, 
radius, normal, normal cone, and optionally color. Further, the 
whole object geometry is constructed as a tree structure (Fig. 
2). Here, one node corresponds to a splat. One parent node has 
up to 4 child nodes. Higher level nodes correspond to a rough 
geometric structure, and lower level nodes correspond to the 

details. In the QSplat file, each splat’s parameters are 
quantized so that one splat data is encoded to 4 bytes (if color 
data, 6 bytes).  

On the rendering stage, the tree is searched from high-level 
to low-level nodes. Tree traversal is stopped at the appropriate 
level and the nodes of that level are rendered. Here, the 
visibilities of the nodes are also considered. As the target 
nodes are at a lower level, the result becomes finer and more 
time is necessary for rendering. Thus, if the processing power 
is limited, the program draws higher level nodes and keeps 
 

 

Fig. 3. Trade-off between rendering speed and resolution. As the target nodes 
are at a lower level in QSplat tree, the result becomes finer and more time is 

necessary for rendering. If the processing power is limited the system renders 
higher level nodes in order to keep interactive frame rate. 

 
Fig. 4. Relations between annotations and QSplat nodes. One annotation may 

correspond to multiple nodes in a QSplat tree. 

interactive frame rates (Fig. 3).  
The system can draw the data while the data file is being 

loaded from server, because the QSplat data are stored from 
high-level to low-level data in the file. Thus, the user doesn’t 
have to wait until the system loads all the QSplat data from the 
server. This is a good feature for low bandwidth environments 
and reduces user irritation. For the same reason, our system 
draws low resolution (high level) data while a user is changing 
viewpoints in the browser. During this operation, a quick and 
interactive response is achieved for user operations.  

 
IV. ANNOTATION 

Annotations show names or explanations of 3D models or 
portions of 3D models, and are rendered with the 3D model. 
Each annotation has a unique ID (annotation ID). Annotation 
IDs are commonly used in rendering systems and HTML. How 
to use annotation ID is described in detail in Sect. V.  



The International Journal of Virtual Reality, 2006, 5(2):67-72 
 

 

69

 
A. Annotation Files  
Annotations are related to the nodes or leaves in a QSplat 

tree. If the associated QSplat nodes are visible and rendered, 
the annotation is also rendered near the splats.  

In most cases, one annotation corresponds to multiple nodes. 
In such cases, we associate the annotation and the root-nodes 
of the highest subtrees. Fig. 4 shows the case that the 
annotation “Head” is related to the 3 splats indicated by 
arrows.  

Because the annotation and the splat nodes are not in a one 
to one correspondence, we used two files to describe the 
annotation: annotation and association files. An annotation file 
describes unique annotation IDs, view information (position,  
 

 
Fig. 5. Annotation and Association File. The Annotation File keeps 
annotation’s ID, annotation text, view points, and the Association File keeps 
relationships between annotation Indexes and splat Indexes.  

 
Fig. 6. Annotation editing tool. User can interactively set annotations onto 
splats by just clicking the portion of the model.  

 
rotation, rotation axis, field of view) and annotation texts. The 
view information is used for the HTML synchronization 
function. When a user wants to see a particular portion of the 
3D data that accords with the annotation name, this view 
information is used to set the correct viewpoint.  

The association file contains the relationship between the 
annotation and the splat indexes. Here, one annotation may 
correspond to multiple Splats. Fig. 5 shows an example.  

To make annotation and association files, we developed the 
editing tool shown in Fig. 6. Designers can easily create and 
edit annotations by clicking the splats of 3D data and writing 
texts or other descriptions.  

 
B. Drawing Annotations with a 3D Model  

Annotations must be drawn at the “free space” of the 3D 
model or other annotations; arrows indicate correspondences 
between annotations and corresponding splats (Fig.7). Here, 
two issues need considering; 1. how to find the “free space,” 
and 2. how to avoid “crossing” of the arrows. We describe the 
algorithm below.  

First, we find the rectangular area where the 3D model is 
rendered. We call this area the “model-rendered area”(Fig. 
7(a)). The model-rendered area is split into 4 sub-areas (Fig. 
7(a)). Then, 4 areas for locating annotations are defined around 
the model-rendered area, which we call “annotation-area.” 
Each annotation-area corresponds to each sub-area. The 
annotations are located by which sub-area the annotated splats 
are rendered in (Fig. 7(b)). For example, if the annotated splats 
are rendered in sub-area I, the annotation is located in the 
annotation-area 1. If multiple sets of annotated splats are 
located in the same area, the vertical order within the area is 
used for the arrangement of the annotations. Namely, if three 
sets of annotated splats are rendered in an area in a particular 
order, the three annotations are drawn in the free space of  the 

 
Fig. 7. Deciding annotation arrangement. (a)First, acquire “model-rendered 
area” and divide the area into 4 triangular sub-areas (I-IV). Then, define 4 
“annotation-areas” for locating annotations(1-4), which correspond to 
sub-areas respectively. (b)Then, acquire the sub-areas where the annotated 
splats are in, and render the annotations onto the corresponding 
annotation-areas.  

 

area with the same vertical order of the splats. Finally, arrows 
are drawn to connect the annotations and the splats.  

 
V. SYNCHRONIZATION WITH HTML  

Our applet can interact with other HTML contents thorough 
JavaScript, which can call methods of the Java applet, and the 
Java applet can call functions of JavaScript. We utilize these 
features. In our applet, some methods are defined for 
interacting with JavaScript. The HTML synchronization is 
realized by JavaScript functions calling these methods and 
controlling the HTML contents.  

The architecture of synchronization is shown in Fig. 8. If the 
user clicks a content (Fig. 8 [A]), the associated JavaScript 
function is called with an annotation ID as an argument (Fig. 8 
[B]), where the annotation IDs are predefined to identify 
annotations and contents associated with a particular 
annotation. This function calls the applet method with the 
same annotation ID (Fig. 8 [C]), and the view of QSplat is 
changed to a predefined one according to the annotation ID 
(Fig. 8 [D]). On the other hand, if the user clicks an annotation 



The International Journal of Virtual Reality, 2006, 5(2):67-72 
 

 

70

in the applet (Fig. 8 [a]), the predefined method is called with 
an annotation ID (Fig. 8 [b]), Then the predefined method calls 
the JavaScript function with an annotation ID (Fig. 8 [c]), and 
these functions control particular contents corresponding with 
the annotation ID(Fig. 8 [d]).  

We have made a sample website that expounds on the Great 
Buddha, as shown in Fig. 9. In this site, our applet is located 
on the left, and the descriptions of each part of the Great 
Buddha are located on the right. These descriptions correspond 
to each annotation in the applet. If headings of the descriptions 
are clicked, JavaScript functions are called to change the view 

of QSplat and to show the detailed description. If the user 
clicks an annotation in the applet, a predefined JavaScript is 
called, and a detailed description is shown on the right side of 
web page and the voice guidance is played.  

VI. EXPERIMENTS  

Two experiments were conducted to verify the usefulness of 
our rendering system in terms of rendering performance. 

 

 
Fig. 8. Flow of HTML synchronization of our applet. If user clicks a HTML 
link related to the annotation of 3D data, a function in Java applet is called 
through JavaScript and changes the view point of the 3D viewer. Inversely, if 
a annotation in the applet is clicked, a JavaScript function is called, which 
shows descriptive texts, plays sounds, or performs the other useful operations. 

 

Fig. 10. Experimental 3D Geometry Data (VRML and QSplat) from The 
Stanford 3D Scanning Repository. Data 1 consist of 69000 polygons, Data 2 
include 1087000 polygons, Data 3 consist of 871000 polygons, and Data 4 
include 3109000 polygons. 

 

 
 
 
 
 

 

 
Fig. 9. A web page using ours system, which expounds on the Great Buddha. 
Our applets are located on left, and the descriptions of the Great Buddha are 
located on the right. Each description corresponds to an annotation in our 
system. If user clicks a heading of the description, the applet’s view point is 
changed to watch corresponding part of the model. Inversely, if an annotation 
in the applet is clicked, the detail description corresponding to the annotation 

is shown.  

A. Experiment 1: Comparing with existing rendering systems  
We compared the rendering speed of our system and that of 

a VRML viewer, the Cortona VRML Client[11]. VRML 
viewers are widely-used 3D rendering systems that can be 
executed on web browsers. In Experiment 1, we prepared 4 
kinds of VRML data and corresponding QSplat data (Fig. 10) 
and located them on a server. Then, we downloaded them 
with a client PC (Intel Pentium 4 2.5 GHz, 768MB memory, 
NVIDIA GeForce4 Ti4200, Internet Explorer 6.0, JRE 
1.5.0.07) through a wired LAN (about 85 Mbps), rendered 
them with Cortona or our system, and measured their 
execution time. We got Data 1, Data 2, and Data 3 from The 
Stanford 3D Scanning Repository [12].  
 

Table I shows the results of Experiment 1. First, our 
system’s executing time to finish rendering was much shorter. 
Specifically , the larger the data size, the larger the difference 
between the execution times. When a viewer renders VRML 
data, a scene graph is made, thus if the data size is large, 



The International Journal of Virtual Reality, 2006, 5(2):67-72 
 

 

71

TABLE I: COMPARISON OF OUR RENDERING SYSTEM WITH A VRML VIEWER 

TABLE II: COMPARING EXECUTION ON A DESKTOP TERMINAL WITH ON A MOBILE TERMINAL, AND COMPARING EXECUTION THROUGH A WIRED LAN 
WITH THROUGH A WIRELESS LAN.

execution time increases explosively. On the other hand, with 
QSplat, a scene graph is not made, so even if the data size is 

large, execution time increases only linearly. Next, because 
our system renders from lower to higher-resolution data 
sequentially, users can reasonably quickly see the first view as 
the time to first view depends on the lowest data. In VRML, 
users have to wait until all data are rendered. This waiting 

time gets longer proportional to the data size. In terms of 

frame rate, the frame rate of the VRML viewer in changing 
the view was smaller than that of our system for each data size. 

These experimental results show that users can not smoothly 
browse large size 3D geometric data with a VRML viewer. 
However, using our system, the resolution of the image is 
adjusted to maintain the frame rate so that users can browse 
even large size 3D geometric data.  

 
B. Experiment 2: Executing in several environments  

We executed our systems on a desktop PC (same one used 
in Experiment 1) thorough a wired LAN (about 85 Mbps), on 
a mobile PC (Intel Pentium M 1.1GHz, 504 MB memory, 
Intel 82852/82855 GM/GME Graphics Controller, Internet 
Explorer 6.0, JRE 1.5.0.07) through a wired LAN, and on a 
mobile PC through wireless LAN (about 8Mbps), and 
measured and compared their execution times.  

Table II shows the results of Experiment 2. The difference 
of terminal doesn’t materially affect the execution time. It 
shows that our system has the potential to be used on any 
terminal. On the other hand, network speed enormously 
influences execution time. In the case of a wireless LAN, 
execution time increases in proportion to data size. In actual 
use, if the data size is too large, our system stops downloading 
at a proper resolution level and renders the model at that level.  

 
VII. APPLICATIONS  

We designed this rendering system to use with content 
management systems. For example, e-learning systems such 
as those involving biology, art or history need this sort of 
geometric data. Also, applications for digital archive systems 
need this sort of rendering system. We are now designing a 

new CMS that can deal with QSplat data and their 
annotations. Our rendering system is included in this CMS. 
The architecture of this CMS is shown in Fig. 11 

 
Fig.11. Proposed CMS using Our Applet. Designer uploads 3D data and 
bodytext with special markup language onto server. The server analyzes the 
markup language and generates HTML files. 

The system consists of contents registering, website editing, 
and 3D data rendering systems. The contents registering 
system manages data including texts, images or other 
multimedia files. The website editing system generates 
HTML files from source scripts that users edit with a special 
markup language. The 3D data rendering system is 
downloaded with HTML files and renders 3D geometric data 
on a HTML browser. Our applet is used as the 3D data 
rendering system. Using this CMS, a user can design 



The International Journal of Virtual Reality, 2006, 5(2):67-72 
 

 

72

websites with various contents including 3D geometric and 
annotation data, even if the user doesn’t have detailed 
knowledge of HTML or the architecture of the CMS. 
  

VIII. CONCLUSION AND FUTURE WORK 

We proposed a new 3D geometric data rendering system 
that can be used in conventional Web browsers or Content 
Management Systems. We implemented QSplat as a Java Ap 
-plet so that it can quickly and precisely render large scale 3D 
geometric data. Our rendering system can dynamically control 
the rendering frame rate and the preciseness of the rendering. 
Thus, it can be used in a variety of hardware/software/network 
environments such as powerful desktop PCs or mobile 
wireless terminals. The HTML synchronization technique 
enables users to smoothly view 3D geometry contents.  

We will extend this system for use with the Content 
Management System. We are now trying to implement a 
website editing system that allows users to make a website 
with registered 3D geometric data and synchronizing 
functions. We are also going to implement a content 
registering system that users can register 3D geometric data 
through a web interface. For this, we are presently designing a 
markup language and implementing functions to convert it 
into HTML.  

 
ACKNOWLEDGMENT 

This work is supported by Ministry of Education, Culture, 
Sports, Science and Technology under the “Development of 
fundamental software technologies for digital archives” 
project.  

 
REFERENCES 

[1]  S. Rusinkiewicz, M. Levoy. QSplat: A Multiresolution Point Rendering 
System for Large Meshes, Proc. ACM SIGGRAPH 2000, pp.343-352, 
2000.  

[2] “Cult3D,” http://www.cult3d.com/  
[3] “Viewpoint,” http://www.viewpoint.com/pub/  
[4] “Adobe Shockwave Player,”http://sdc.shockwave.com/products/shock 

-waveplayer/  
[5] T.Fujimoto, K.Konno and N.Chiba. Introduction to Point-based Graphics, 

The Journal of the Society for Art and Science Vol.3, No.1, pp.8-21, 
2004. 

[6]  H. Pfister, M. Zwicker, J. Baar and M. Gross. Surfels: Surface elements 
as rendering primitives, Proc. ACM SIGGRAPH, 2000 

[7]  F. Duguet, G. Drettakis. Flexible Point-based Rendering on Mobile 
Devices, IEEE Computer Graphics and Applications, Vol.24, No.4, 
pp.57-63, 2004. 

[8]  Y. Okamoto, S. Yamazaki and K. Ikeuchi. Efficient Point-based 
Rendering Method for Huge 3D Models using Sequential Point Clusters, 
Proc. Meeting on Image Recognition and Understanding 2004 (MIRU 
2004), Vol.1, pp.207-212, 2004. 

[9]  Q.Peng, W.Hua and X.Yang. A new approach of point-based rendering, 
Proc. Computer Graphics International 2001, pp.275-282, 2001. 

[10] “Java Bindings for OpenGL,” https://jogl.dev.java.net/. 
[11] “Cortona VRML Client,” http://www.parallelgraphics.com/ products 

/cortona /. 
[12] “Stanford 3D Scanning Repository,” http://graphics.stanford.edu/data 

/3Dscanrep/. 
 
 

 
 
Yousuke Kimura received the B.S. in Osaka 
University in 2005. He is currently pursuing his 
Master’s degree in Information Technology at Osaka 
University. He is engaged in studies relating computer 
graphics. He is a student member of IEICE. 
 
 
 
 

 
Tomohiro Mashita graduated from Osaka University 
in 2001 and completed the M.S. and doctoral programs 
in 2003 and 2006, respectively. He is a postdoctoral 
fellow in Osaka University. He is engaged in studies 
relating to computer vision and human interface. He is 
a student member of RSJ, HIS, and IEICE. 
 
 

 
Atsushi Nakazawa received the B.S degree in 1997 
and the Ph.D. degree in Engineering Science from 
Osaka University in 2001. Since 2001, he have been 
worked for Institute of Industrial Science, University 
of Tokyo as a postdoctoral researcher. Since 2003, he 
have been working for Cyber media Center, Osaka 
University as a lecturer. His research interests are 
Computer Vision and Robotics, in particular, 
estimating human posture from images, analysis 
human motion using motion capture and humanoid 

robot control. He is a member of IEEE, IPSJ, and RSJ. 
 

Takashi Machida received the B.S. in Osaka 
University in 1998. In 2000, he received the M.S. 
degrees in Nara Institute of Science and Technology. In 
2002, he became a Assistant Professor at the Cyber 
media Center of Osaka University after he retired from 
the Graduate School of Nara Institute of Science and 
Technology. He is engaged in research on image 
processing, computer vision and computer graphics. He 
holds a PhD in Engineering. He is a member of IEEE 

and ACM. 
 

Kiyoshi Kiyokawa received his M.S. and Ph.D. in 
Information Systems from Nara Institute of Science and 
Technology in 1996 and 1998, respectively. He was a 
Research Fellow of the Japan Society for the Promotion 
of Science in 1998. He worked for Communications 
Research Laboratory from 1999 to 2002. He was a 
visiting researcher at Human Interface Technology 
Laboratory of the University of Washington from 2001 
to 2002. He is currently an Associate Professor at 
Cyber media Center, Osaka University. His research 

interests include Virtual Reality, Augmented Reality, 3D User Interface and 
CSCW. He is a member of IEICE, IPSJ, VRSJ and ACM. 
 

 
Haruo Takemura received B.E., M.E., and PhD. 
degree from Osaka University in 1982 1984 and 1987 
respectively. In 1987, he joined Advanced 
Telecommunication Research Institute, International. 
In 1994, he joined Nara Institute of Science and 
Technology, Nara as associate professor at Graduate 
school of Information Science and Technology. From 
1998 to 1999, he was a visiting associate professor at 
University of Toronto, Ontario, Canada. In 2001, he 

became a full professor at Cyber media Center, Osaka University, Osaka, 
Japan. Since August 2005, he also serves as a vice-director of Cyber media 
Center. His research interest includes Interactive Computer Graphics, 
Human-Computer Interaction and Mixed Reality. He is a member of IEICE, 
IPSJ, VRSJ, HIS, IEEE and ACM. 

http://graphics.stanford.edu/data%20/3Dscanrep/
http://graphics.stanford.edu/data%20/3Dscanrep/

