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Virtual Environment for an Ants-like
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Abstract— In this paper we introduce an integrated virtual
environment of ants-like agents based on ants' behavior. Our
system can simulate the behavior of ants-like agents under various
conditions and environment changes. In our model the ants are
moving in random on an environment that contains a randomly
distributed source of food. Ants move with some simple rules and
can change direction according to environmental information. We
test this model with various situations and conditions of the
environment to study how the system works with the pheromone
information. In the aim of realizing the practical implication of
our model, a web-based computer simulation is given. This
simulation enables the study and test for the model under
different circumstances of the environmental conditions.
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I INTRODUCTION

Ant colonies attracted scientists because of their ability to
collectively achieve complex tasks through self-organization
processes based on simple rules. It is believed that such
collectively technique is the main reason for the survival of
such small insects through millions of years on earth despite the
drastic changes in environment and living conditions through
history. Imitating this behavior, computer scientists and
engineers are interested in building ants-like agents (e.g.
ants-robots, see [11]) that has limited sensing and
computational capabilities, but are simple to design, easy to
program, and cheap to build. This makes it feasible to deploy
groups of such agents, in places inaccessible otherwise, and
take advantage of the resulting fault tolerance, parallelism, and
collectively achievement of a certain goal. One of the most
interesting ants’ behaviors is the highly optimized path that ants
follow, in their foraging, between the source of food and the
colony's nest. The ants’ decision is controlled by imitating and
following of trails of a chemical substance, called pheromone.
When there is a choice among several alternative paths, ants
choose a path in a probabilistic way, based on the pheromone
concentration over the possible paths. This mechanism allows
the selection of the shortest path among several ones [7]. Hence,
the pheromone concentration on those paths increase more
rapidly and they attract more ants. This process of indirect
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communication relies on a positive feedback mechanism and
depends on the environment characteristics, e.g. colony size
[10], food type [13], number of food sources [12] and the nature
of the environment on which the ants are moving [4]. Such
optimized behavior inspired several applications, for example:
traveling salesman problem [5], the quadratic assignment
problem [6], the job shop scheduling problem [2], the graph
coloring problem [3], the vehicle routing problem [1], and
network routing algorithm with digital pheromone which used
by British Telecommunications PLC in London to solve
routing problem and to find the shortest path [9].

In this paper we introduce an integrated environment for
ants-like agents based on such ants' behavior. Our system can
simulate the behavior of such agents under various conditions
and environment changes. In our model the ants are moving in
random on an environment that contains a randomly distributed
source of food. Ants move with some simple rules and can
change direction according to environmental information. We
test this model with various situations and conditions of the
environment to study how the system works with the
pheromone information. In the aim of realizing the practical
implication of our model, a web-based computer simulation is
given. This simulation enables the study and test for the model
under different circumstances of the environmental conditions.

The paper is organized as follows. Section two contains a
description of our model. In Section three we introduce the
design of a web-based simulation of our model. Section four
contains an analysis and study of our model and simulation.
Finally we conclude our work and discuss further research in
Section five.

Il. THEMODEL

Our model can be described as follows. At a time t, the
environment has one colony, At ants, and Ft food. All are
randomly distributed in the environment. The ants’ objectives
are to collect food to colony and to spread pheromone, with
different levels, to attract other ants’ attention. The
environment has changeable conditions: ants follow the
birth/death property according to its life cycle, more food may
be created if necessary, and the pheromone amount can be
change accordingly. The flowchart in Fig. 1 (a) describes the
birth/death property of ants, and in Fig. 1 (b) describes the food
creation process.
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be created in the environment. After initializing the food, at a
certain time t, if the amount of food Ft is less than the maximum
amount of food Fmax then, a new food is created at some
random position in the environment, see the flowchart in Fig.
1(b).

An ant anti has a life cycle Li, when Li =0, anti dies. Anant
at a position p can find food in some of the surrounding four
positions and can fell and affected by the pheromone in the
surrounding twelve positions as shown in Fig. 2.
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respectively. This decrease percentage is natural due to external
factors in the environment (in nature, for example wind). The
Direction set is the set of surrounding areas from the four
directions around the position p, i.e. Direction= {North, East,
South, West}.

Pheromone at a certain position can affect the amount of
pheromone in its neighboring positions. Positions are
initialized with a small amount of pheromone (may be zero). If
the pheromone amount in a position is greater than zero, this
position spreads pheromone to the neighbor positions in the
environment. Then the amount of pheromone is decreased in
that position. Finally, a new pheromone is calculated based on
the decreased amount of pheromone in the position and the
amount of pheromone from the neighboring positions in the
environment and from other ants. The flowchart of this process
is shown in Fig. 3.

In our model, such pheromone information is used to help
ants to decide how to select the next step. At a time t, the
pheromone information It, in a rectangular area X*Y of the
environment, is calculated using the formula:

Initialize: Ant

A 4

In Colony?

No

Calculate: Pheromone,Food,and
Probability

Zi<x,j <y

s pheromone, (i,))

I =
t XY

At a time t, the amount of food carried to the colony by an
anti is denoted by F(anti). In our model we assume some
dependency among ants. An initial dependency percentage
(Dep%) can be initialized in the model. If Dep% is initialized
to zero, then no dependency among components. The
dependency Dep(p) at some position p is calculated by the
percentage of the pheromone at p, Pheromone(p), multiplied by
the initial dependency percentage Dep%, i.e.

pheromone (p)

Dep(p) = 100

* Dep%

A unique behavior in our model is the property of ant's trait
homing instinct. When ants’ life is near its end, ants want to go
home colony or rest some time. Also if ants have many food,
they want to take back home quickly. At any moment, the anti
desires to go back home to the colony can be measured by the
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Fig. 4. The possible actions of ants in our model



64 The International Journal of Virtual Reality, 2010, 9(4):61-66

probability P(h) as follows:

F(ant;) * w + F(ant;) * D(ant;, colony)
u

P(h) =

Here D(anti, colony) is the distance between the anti and the
colony, and w and u are some arbitrary values. When testing
our model in our simulation with different values of w and u,
we found that our ants-like agents work as near as real ants
when the value of w=20 and the value of u=8.

In our model, ants move on a random walk. There is a set of
five basic actions; Actions={move one step forward, turn right,
turn left, rest in same place, pick up food}. Every action is
initialized with a base probability, Pbase (i) for all i in the set of
Actions. At atime t, if anti is at position (X,y), the probability
of action of anti is calculated as follows.

o P(move) = Pye(move) + Dep(front position) + P(h)

e P(turnR) = Py (turnR) + Dep(right position) + Dep(back
position) + P(h)

e P(turnL) = Py (turnL) + Dep(left position) + Dep(back
position) + P(h)

o P(pick) =Py (pick) + F(x,y)* Pheromone(x,y)

o P(Rest) =Pbase (Rest) + ([(m- Li)*(1+(F(anti))/n)

Here F(x,y) and Pheromone(x,y), represent the amount of
food and the amount of pheromone at the position (x,y), i.e. the
anti ‘s position, respectively. While m and n represent some
arbitrary values. Experimentally, we found that our ants-like
agents works as near as real ants when the value of m=120 and
the value of n=20.

The ants’ actions in our model are described in the flowchart
of Fig. 4.

Ants are randomly created in the environment. If the antis in
colony, then if it holds food, release that food, decrease the life
cycle of the ant and check the ant’s new situation. If not in
colony or in colony but holds no food, then calculate the current

pheromone, check for food, and calculate the action probability.

According to the value of the action probability, the ant can:
move one step forward, turn right, turn left, reset in its position,
or pick food. If food is picked, then spread some amount of
pheromone. If not, then if the ant already holds food, then
spread some amount of pheromone. Otherwise spread normal
(small) amount of pheromone. Next decrease the ant’s life
cycle and repeat the same process till the end of the ant’s life.
This process is shown in the flowchart in Fig. 4.

. SIMULATION

In this section we introduce a computer simulation of our ants’
model described in section 2. The purpose of this simulation is
to visualize the model elements such as ants, food and
pheromone. It also enables us to test the model under different
environmental conditions. In this simulation, we use n x n
square lattice with absolute boundary conditions to represent
the environment. All components such as colony, ants, and
food are distributed randomly on the lattice cells. The

simulation is designed as a web-based Java applet to enable its
use over the internet. An overview of the main menu in our
simulator is shown in Fig. 5.

Environment is the most important component in our
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Fig. 5. The main menu of our simulator

simulation. The environment cellular automaton is used to
spread pheromone. Each cell holds an integer value between 0
and 255 to represent the amount of pheromone in it. The
simulator allows a set of pheromone preconditions.
Preconditions are preserved by the environment and are used to
check the behavior of ants in different situations. Five
preconditions are provided; normal, line, frame, two box and
squares. These preconditions represent the waves of pheromone
in the environment, for example framed precondition causes the
pheromone waves to be shaped as a frame. All preconditions
keep the present value of pheromone. Normal condition has no
preset value.

The cellular automaton, that represents the environment, is
determined by the values of X and Y. The simulator has three
major parts: visualization components, operations, and menu.
The visualization components show the simulator; which
visualize and simulate the model components (colony, ants,
food, and pheromone) and the graph which graphically shows
the relationship between the model components. We can trace a
specific ant by initializing its ID number (from 1 to Amax).
Then we can follow up the random walk of that ant by using the
random walk button. The information part shows much
information about the simulation and the traced ant. For
example we can show the mean square end to end distance of
all the ants’ random walks and the mean square radius of
gyration. We can also see the amount of pheromone as a
function of time, and many more information. The second part
of the simulator is the operations. The operations that controls
the simulation are simple, it is to start running the simulator as a
whole or as step by step, or to clear the initialization so we can
try another run with new values. The menu part of the simulator
has many options to control the simulation process. We can set
the initial values of ants and food, the position of the colony,
and we can control the creation of food and ant through
changing the parameters (as defined in the previous section).
The pheromone can be controlled and initialized. The spread
conditions can be modified. Finally the dependence values can
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components of the

simulator.
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TABLE 1: EXPERIMENTAL RESULTS FOR CONDITION 1

la | Ci Fo | A
0 122 |43 |15
321 | 141 |21 |18
124 | 127 |41 |16
320 | 147 |28 |12
193 [ 129 |40 |12

olo|O|To| o

TABLE 2: EXPERIMENTAL RESULTS FOR CONDITION 2

lya Ci Fo | A
0 130 |45 |7
104 | 101 |5 |9
134 | 93 70 |7
90 103 |90 |3
74 107 |77 |10

Do|lo|lo|T| o

IV. ANALYSIS

To analyze our model we test it with two different conditions:
when food is randomly distributed in a limited area of the
environment and when food is randomly distributed in the
entire environment. Within each condition five cases are
considered for the pheromone dependency conditions. Then
we compare the results to see how the model behaves. In this
experiment we consider the cellular automaton environment
with 50x50 cells, 40 ants, and 200 foods. We compare the
values of average pheromone amount It/a, food in colony Ct,
current food amount Ft, and number of ants At, in a time period
t up to 1000. The five pheromone dependency conditions are:
a. No dependency i.e. the value of initial dependency Dep%
= 0%
b. Dependency is Dep% = 30%, pheromone stay longer, and
ants attracted to pheromone
c. Dependency is Dep% = 30%, pheromone stay shorter,
and ants attracted to pheromone
d. Dependency is Dep% = 30%, pheromone stay longer, and
ants disperse from pheromone
e. Dependency is Dep% = 30%, pheromone stay shorter,
and ants disperse from pheromone
Cases b and c are testing the closing ants’ behavior: ants
spread strong pheromone when find food. Cases d and e are
testing the avoiding ants’ behavior: ants spread strong
pheromone when they bring food to colony. The ants’ action is
pheromone dependent, so it is interesting to see how such
pheromone conditions can affect the ants’ behavior. The
following tables summarize the experiment results. Table 1
summarizes the results of the five cases with respect to
condition one, i.e. food is randomly distributed in a limited area
of the environment. Table 2 summarizes the results for the
second condition, i.e. when food is randomly distributed in the
entire area of the environment.
Since the mission of ants-like agents in our model is to
collect food in colony, the results show that agents work better
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with condition one than condition two since the average
collected food with condition one is 133.2, and the average
collected food with condition two is 106.8. This result
coincides with our intuition, since food in limited area can be
collected faster than food in a large area. Within condition one,
we found that case d is better since more food is collected. This
shows that sometime too much pheromone can cause ants’
confusion. Within condition two case “a” shows a better result
since more food is collected.

V. CONCLUSION

In this work we introduced a model for ants-like agents based
on ants’ behavior. We also introduced a visual simulation of the
model as a web-based java applet. Then we tested and analyzed
our model through the web-based simulation. We figure out the
conditions in which our model can behave like real ants in
nature. However our model is more general, it can cover many
more situations. This makes it a suitable model for ants-like
agents (such as ants-robots). Like real ants, ants-like agents in
our model rely on the pheromone as a mean method of
communication and interaction with the environment. This
kind of model may not be suitable in some situations in real life,
where agents should be able to learn from the environment and
deal with changeable environmental conditions more
intelligently. For this purpose we plan to introduce intelligent
ants: ants that can learn from its environment and change its
behavior accordingly. We can utilize one of the neural
networks techniques (such as back-propagation) or genetic
algorithms for that purpose. Our system is temporarily
available at [8].
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