The International Journal of Virtual Reality, 2011, 10(1):29-35

29

/‘

Particle-Based Viscoelastic Fluids

A Fast and Practical Method for Animating y@

Kenji Takamatsu and Takashi Kanai

The University of Tokyo, Graduate School of Arts and Sciences

Abstract—This paper proposes a practical technique for fast
animation of materials such as viscoelastic fluids. A fast animation
of such materials is desperately desirable especially for real-time
applications such as games. We compute the behavior of
viscoelastic fluids approximately instead of the exact simulation
by combining two well-established approaches, Smoothed-
Particle Hydrodynamics and Shape Matching. This enables fast
and stable computations. A combination is done by a simple linear
interpolation of velocities. A variety of materials between a fluid
and an elastic solid can be represented by changing only a
parameter of linear interpolation. We also propose how to bring
our approximate method closer to the actual motions of
viscoelastic fluids including merging or splitting of objects. We
demonstrate a high-speed performance of our method with
presenting several interesting results.

Index Terms—Computer Animation, Viscoelastic Fluids,
Particle-Based Simulation, Smoothed-Particle Hydrodynamics,
Shape Matching.

l. INTRODUCTION

In this paper we describe a practical technique for fast
animation of materials such as viscoelastic fluids. Viscoelastic
fluids are the materials which have both physical properties of
fluids and elastic solids. By weak forces they keep their original
shape like an elastic solid, and by strong forces they deform and
change their shape like a fluid. There are a huge variety of
materials which represent this type of behavior, e.g., clay,
chewing gum, toothpaste, shaving cream, gelatin, etc.
Animations of these materials have recently been successfully
used in special effects for computer graphics applications.
Especially for games, fast animation of such materials is
desperately desirable.

According to the theory of continuum mechanics [7], the
difference between a perfect fluid and an elastic solid is
whether an elastic force, which an object reinstates itself to its
original shape, is included or not. To simulate the behavior of
viscoelastic fluids in the literature, the general approaches are
to introduce elastic forces into the Navier-Stokes equation.
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Indeed, previous approaches in CG community solve such
extended governing equations by using an Eulerian grid-based
fluid simulation [11] or a particle-based Lagrangian fluid
simulation [10]. These straightforward approaches are,
however, hard to be processed in real-time. As far as we know,
there is no approach to simulate viscoelastic fluids fast enough
to be used in real-time applications.

We propose a fast and stable method to compute the behavior
of viscoelastic fluids approximately instead of the exact
simulation. A key idea here is to combine two well-established
approaches for fast and stable computations of object motions.
For computing fluid motions, a Smoothed-Particle Hydro-
dynamics (SPH) method [14] can be recently used. It is a
particle-based Lagrangian method and then each particle can be
moved freely. On the other hand, Shape Matching (SM)
methods [17, 21] approximately represent motions of elastic
solids in real-time. They are originally designed for solids, i.e.,
the connectivity of elements (particles) does not change during
deformations. However, those methods are by nature
extendable in the case of changing the connectivity of particles.
A combination is done by a simple linear interpolation of
current velocities in order to keep the high-speed performance
and the robustness of an individual method. Consequently, a
variety of materials between a fluid and an elastic solid can be
changed by only a parameter of linear interpolation. We also
discuss how to bring our approximate method closer to the
actual motions of viscoelastic fluids including merging or
splitting of objects.

II. RELATED WORK
2.1 Fluid simulation

Fluid simulation became widely known in computer graphics
by a method of Foster and Metaxas [9]. Their method solves
Navier-Stokes equation, the governing equation of fluids, by
discretizing using an Eulerian grid. Stam [24] simplified an
advective term by using the semi-Lagrangian method to
improve an Eulerian grid-based method with robustly taking a
large time step. On the other hand, Lagrangian particle methods
such as Smoothed-Particle Hydrodynamics (SPH) [14] were
well studied recently. SPH was first introduced in astrophysics
and Maller et al. [15] successfully used in computer graphics at
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interactive rates. Adams et al. [1] used an adaptive sampling
method to improve computational performance. Performances
were further improved by using GPUs [12]. SPH can also be
used for representing other types of materials between fluids
and solids. For example, Solenthaler et al. [23] additionally
introduced a temperature term to represent melting and
solidification of objects.

2.2 Elastic solid animation

Elastic solid animation was introduced by Terzopoulos et al.
[26] using a finite difference method. Several other methods
were also studied such as a mass-spring method [2], a FEM
method [16], a particle-based method [18]. Those methods are,
however, time-consuming due to exact and robust solutions of
elasticity equation. On the other hand, a Shape Matching (SM)
method originally proposed by Miuller et al. [17] is a
geometry-based approach and imitates an elastic deformation.
The main advantage is its fast and unconditionally stable
computation; there is no need to solve the equation of motion.
Later, its computational performance was further improved by
using an adaptive sampling [25] or by using a lattice shape [21].
As an example to imitate physical motions, Rungjiratananon et
al. [22] recently extended SM to simulate human's hairstyles.
Becker et al.[4] used both SPH and SM to represent elastic
motions. This is most relevant research to ours in the sense that
SPH and SM can be efficiently combined. The main difference
is that they integrate the computation of rotation matrices in SM
into SPH, while our method simply interpolate velocities so as
to keep the high-speed performance and the robustness of an
individual method.

2.3 Viscoelastic Fluids / Viscoplastic solids simulation

Goktekin et al. [11] realized a viscoelastic fluid simulation
by taking into account an elastic term to an Eulerian grid-based
fluid simulation [8]. Bargteil et al. [3] achieved a robust
viscoplastic solid simulation by using a FEM method and
remeshing. Several methods based on SPH were also studied
for considering elasticity, plasticity, and viscosity. Clavet et al.

[6] added springs between pairs of neighboring particles in SPH.

Paiva et al. [19] modified the traditional N-S equation and
employed generalized Newtonian liquid model to simulate
viscoplastic fluids. Solenthaler et al. [23] introduced a unified
particle model for the simulation of liquids and deformable
solids as well as rigid objects. This is the most relevant research
to ours. Chang et al. [5] introduced more general elastic stress
term to the N-S equation and changed the viscosity and elastic
stress coefficients according to the temperature variation.
Gerszewski et al. [10] applied arbitrary constitutive models to
compute elastic forces in viscoplastic solids by using
deformation gradients. All these methods are, however, hard to
be used in real-time applications. This is mainly because each
time step has to be set to an extremely small value to robustly
handle numerical simulations.

I, ANIMATION FRAMEWORK

In this section, we describe our animation framework to
compute the behavior of viscoelastic fluids. As described in
Section 1, a key idea is to combine two well-established
approaches for fast and stable computations. It should be noted
that our approach does not solve a combined N-S equation with
an additional elastic term like as most of previously-published
approaches. In our approach two fast and stable approaches,
SPH for fluid simulation and SM for elastic solid deformation,
are processed independently in each simulation step and two
velocities are linearly interpolated. A new position is then
computed by integrating an interpolated velocity. Note that we
do not consider the plastic deformations, since we use SM to
represent elastic motions approximately.

3.1 Combination of SPH and SM

We briefly introduce two approaches, SPH and SM, at first.
We then describe how to combine these two approaches.

SPH formulations. SPH is an interpolation method with each
particle carrying field quantities. A force for each particle
p; (i=1 ..n") is computed based on the physical properties
of neighboring particle p; weighted by kernel functions.
According to the N-S equation, forces for each particle are the
pressure force f"***, the viscosity force fY*°°, and the
external force f¢** including gravity force and collision
response forces as follows:
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where m;, p; = ¥; m;W,s(|x — x;]), v; are mass, density,
and velocity vector respectively. Also, p; = k(p; — po), po, k,
wdenote pressure, initial density, pressure coefficient, and
viscosity coefficient respectively. Note that neighboring
particles p; have to be updated for each simulation step. A
kernel function W s(r) is defined as follows:
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Based on three forces described above, an acceleration
vector a7 is calculated as follows:

i
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a

A position and a velocity vector are updated from such an
acceleration vector by using the standard Euler method as
follows:

viPH = vt + AtSPH g$PH (5)
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x;PH = xt + AtSPHp7PH (6)

SM formulations. SM imitates an elastic solid deformation.
Fig. 1 illustrates the original SM scheme. The reference shape
x" is rigidly transformed to its goal position g by using a
rotation matrix R and a transformation vector t. We compute ¢t
as a barycenter position, and R by the polar decomposition of a
linear transformation matrix from x™/ to x. A position x of
each particle is then pulled towards its goal position g.
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Fig. 1. Computation of R and t in SM.

Here we slightly extend a method proposed by Rivers and
James [21] to fit our animation framework. The original
scheme utilizes a lattice structure to improve computational
performance. In contrast, our extension adapts the case that
neighboring particles are arbitrary located.

For a particle p; (i = 1 ...nP), neighboring particles p; € N;
within a support sphere of radius o° are collected. A goal
position g; is then defined as the average of rigidly transformed
positions from neighboring particles,

1
8i = WZ(R]- (Xiref - Xjref) + t]-) ©)
j

where R; and t; are a rotation matrix and a transformation
vector of rigid motion in each neighbor particle p;.

Fig. 2. Comparison to the motions in SM with different settings of 6°. The
length of the bar is 40.0. From left to right: 6° = 8.0, ¢°* = 5.0, 0* = 3.0.

Fig. 2 demonstrates the results for different support radii o*.
A larger support size makes an object stiffer due to the effect of
more particles. The computation time also increases much more
for a larger support size.

A position and a velocity vector are updated from a goal
position as follows:

(g: —xD) fi

SM _ SM

v; +W+At l (8)
M = xt + AtSMyM 9)

Combination by the interpolation of velocities. In our

combination method, velocities of both SPH and SM are firstly
updated independently by Equation (5) and (8). Such two

velocities are linearly interpolated by using only a parameter
a (0 < a < 1). A new position is then computed by using an
Euler integration scheme as follows:

it = quiPH 4+ (1 — )viM
xi AL = x4 AtwltA

(10)
(11)

In addition to the interpolation of velocities described above,
the use of acceleration vectors or positions can be considered
for the combination. However, there is a possibility that it is
computationally unstable due to the division by a small At.

Our method can represent various types of materials with
different physical properties by changing a parameter a. Fig. 3
compares the shapes of cubes with different @ when they are
fallen on the floor. As shown in this figure, a cube deforms like
an elastic solid with ¢ = 0.0, and a cube flows like a fluid with
a = 1.0. Also, a viscoelastic behavior can be presented when «
is set to an intermediate value between 0 and 1. An elastic
property is greatly appeared as like a jelly with ¢ = 0.3, and a
fluid property is stronger as like a toothpaste with @ = 0.7 in
Fig. 3.

Adjusting the movement of particles. In SPH, a time interval
AtSPH is dynamically changed to keep the simulation stable.
AtSPH is controlled so as not to move larger than a support
radius of a particle in each simulation step, i.e., AtS"# is set in
order to satisfy the following inequation;

AtSPH - max(|viPH|) < o° (12)

where max(|v;?#|) denotes a maximum value of the
magnitude of velocities for all particles. If a velocity is large, a
time interval is set to a small value and then the movement
distance of a particle in each step becomes small.

On the other hand, AtS™ has little effect on the movement of
particles in SM. In Equation (8) a velocity becomes large for a
small At . However, in Equation (9) a position is updated by
adding a velocity multiplied with AtS™, then the effect of AtSM
gets balanced out. Consequently, the effect of a fluid over the
elasticity is relatively changed with different settings of AtSPH

To resolve this issue, the movements of particles in SM are
adjusted by a time interval AtSP# . That is, Equation (8), a
formula for computing the velocity, is re-written as follows:

AtSPH (g _ xg) AtSMfext
M=+ SPH l SMl : (13)
Aty At m;

The second term on the right of Equation (8) is scaled to
follow the dynamic change of AtSP# over its initial value
AtgP" . Therefore, a position and a velocity in SM are
automatically controlled in a balanced manner. The adjustment
of a time interval occurs when the density of particles becomes
high, e.g. a collision against other objects. In this case,
velocities of particles become large due to the high pressure
forces. In our experiments, we set Atg""# = At5™ = 0.15and a
50 percents smaller AtSP# in maximum than Atg™" is observed
during the simulation.
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Fig. 3. Comparison of the shapes of fallen cubes with various setting of a.

3.2 Splitting and Merging

Splitting or merging frequently occurs in the viscoelastic
materials. A viscoelastic object in general is split into two small
objects when external forces stronger than internal elastic
forces are applied to a part of its body. Two objects are merged
when external forces of objects collided with each other exceed
over their internal forces.

Since in SPH each particle moves freely and the arrangement
of particles is not fixed, splitting and merging naturally occur.
However, in the original SM, a reference shape is used to keep
its original shape as an elastic solid. The arrangement of
particles in such a reference shape is fixed during the
simulation. Therefore, splitting or merging never occurs due to
the fixed reference shape. We apply here the following two
extensions to establish splitting and merging with SM.

Update reference shape based on material properties. We
update a reference shape during the simulation in contrast to the
original SM. When a reference shape is updated, neighboring
particles in each particle are possibly changed. Splitting or
merging can occur according to the relationship between
neighbor particles. Note that the computational cost of such
update is subtle since the neighboring particles are already
constructed in SPH and can be reused.

Several factors are considered to check whether the reference
shape is updated or not. Firstly, the change of the object shape
is one of key factors. Here we consider external forces adding
to an object. This is because that a topological change of a
viscoelastic fluid is thought to be caused by suffering external
forces. We then check whether a reference shape is updated or
not by the magnitude of external forces. Let |f***| be an
average of the magnitude of external forces for all particles. A
reference shape is updated if |fe**| > f,, where f, denotes a
threshold. It should be noted that £, is an important parameter
to check the update of the reference shape, e.g., setting a larger
f.. tends to be harder to update the reference shape.

Another key factor to check the update of the reference shape
is the physical property of an object. In the case of the elastic
solid, a reference shape does not want to be updated despite
huge external forces. Also, a reference shape wants to be
updated for each step in case of a fluid. To satisfy both demands,
we relate a parameter « to f,,. For a small a an object is close to
an elastic solid, and then f, should be set to a large value. On
the contrary, it is desirable for a fluid to set £, to a small value
for a large a.

We then define a monotonically decreasing function as

shown in Fig. 4 to compute f,, according to « as follows:
fu = yu(l - a) (14)

where y, denotes a value of f, for « = 0. This function is

especially useful in the animation which « is varied
continuously.

0 1=

Fig. 4. Af, — a function to compute f, according to a.

Setting the number of simulation steps for updating
reference shape. If the update of the reference shape is applied
in every simulation step, the reference shape is deformed like a
fluid. A viscoelastic motion cannot then be realized. So, it is
better to have a certain interval to check the update. Here we
introduce a parameter m,, and check the update if the number
of simulation steps reaches m,. We empirically set m, 2-3
times larger than fps in our simulator to work our check well at
reasonable computation time.

3.3 Algorithm

We now describe our whole algorithm below. ¢ denotes the
number of simulation steps to be used for checking the update
of the reference shape.

c < 0;
loop
if c mod m, = 0 then
if |fe*| > f, then
x™f « x*; {Update of the ref. shape}
end if
end if
Adjust AtSPH; {Eq. (12)}
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Fig. 5. Experimental results of our method with different settings of o.(Color Plate 5)

Compute v5PH; {Eq. (5)}

Compute v**; {Eq. (8)} 3.4 Rendering

Compute vt x4t LEq. (10), (11)}

(Option) Rendering by x**4; Just after positions are updated, we render the surface of the
vt P vt+At;

current particles. Although a lot of methods for the rendering of

xt o« xttAL SPH particles have been recently proposed, we adopt a simple
cec+1; method. We first create an implicit distance field on a regular
end loop grid covering particles, and then extract an iso-surface by using

Marching Cubes algorithm [13].



34

The International Journal of Virtual Reality, 2011, 10(1):29-35

TABLE 1: STATISTICAL RESULTS OF OUR EXPERIMENTS. n”: THE NUMBER OF PARTICLES. |IV|: THE AVERAGE NUMBER OF
NEIGHBORING PARTICLES. V-SIZE: THE SIZE OF VOXELIZATION FOR SURFACE EXTRACTION. FPS (1): FPS WITHOUT SURFACE
EXTRACTION AND RENDERING. FPS (2): FPS WITH SURFACE EXTRACTION AND RENDERING.

Fig. 2 Fig. 3 Fig. 5(a) Fig. 5(b) Fig. 5(c) Fig. 5(d)
Bar Cube Moai Armadillo Bunny Balls
n? 3,600 3,600 3,600 | 10,648 3,375 | 3,764 2,015 | 4,157 2,680 | 4,185 1,328 | 8,264
|1V| 755.3 2565 64.3 80.7 236 | 853 431 | 271 166 | 351 26.7 28.3
a 0.0 0.0 0.0 0.7 0.7 0.0 0.0 0.8 0.8 0.85 0.85 0.9
Yu 8.0 8.0 8.0 12.0 12.0 6.0 6.0 6.0 6.0 6.0 6.0 10.0
V-size 96 96 96 128 128 160 64 160 64 160 32 160
X 96 96 96 128 128 160 64 160 64 160 32 160
}z/ 128 128 128 128 128 192 96 192 96 192 48 224
FPS (1) 1.8 4.7 14.2 4.1 25.1 8.7 266 | 219 422 | 174 646 11.3
FPS (2) 1.3 2.4 3.8 0.35 1.2 0.56 5.4 0.68 6.3 0.42 36.8 0.20

To achieve fast rendering, we first extract a part of particles
which are on the surface, and a distance field is then created
from those particles. In SPH, a particle on the surface tends to
have less neighboring particles than an inner particle, and then
its density is lower. Therefore we consider as a particle on the
surface if its density p; is less than a threshold p*.

IV. RESULTS AND DISCUSSION

We discuss our results in this section. All our experiments were
performed using a notebook PC with Intel Core 2 Duo P8700
2.53GHz CPU and nVIDIA GeForce GT 130M GPU. Table 1
presents the statistical results of our experiments.

Our input is a set of 3D solid points. To create uniformly-
sampled points from polygonal meshes, we used 3D Delaunay
triangulations in CGAL [20]. Note that we used only vertices of
the output tetrahedra as our input. Resulting images are created
by using Sunflow [27], an open source global illumination
renderer.

Fig. 5(a) shows the “Moai” model (3,764 points) with setting
a = 0.0. As can be seen from this figure, its motions are like an
elastic solid and keep its original shape even after being
bounced on the floor. It is to be noted that a support size is set to
a large value to establish stiffer motions, and the average
number of neighboring particles therefore becomes large. Also,
a SM in our method is obviously slower than the original
method in [21], because we adapt our method to the case that
neighboring particles are arbitrary located.

Fig. 5(b) shows the “Armadillo” model (4,157 points) with
setting a = 0.8. Its motions are like an elastic solid but a fluid
property is also included. As shown in this figure, an object is
collided and is spread on the floor; however, its shape is not
perfectly collapsed.

Fig. 5(c) shows the “Bunny” model (4,185 points) with
setting « = 0.85. Its motions are like a fluid with some
elasticity. This experiment presents an example of splitting and
merging; we can see that an object is once collided with a
hemisphere and is split into several parts. They are finally
merged on the floor.

Fig. 5(d) shows four balls dropped in the pool with setting
a =0.9. Its motions are also like a fluid with a little bit
elasticity. It can be seen that a ball is dropped and is merged
into the pool water.

Concerning about the computational performance of our
method, most time-consuming part is caused by computing
positions in SM, especially when the number of neighboring
particles is large. Our method is still competitive because it
keeps more than 5 times faster compared to other recently
proposed methods for viscoelastic motions [19, 5, 10]. The
method by Paiva et al. [19] is the fastest among three
approaches. The computation of “Pressing Cube” composed of
approximately 6K particles is at 1.81 FPS on a Centrino
1.86GHz CPU as shown in [19]. In contrast our method
establishes 14 FPS by a similar experiment.

V.  CONCLUSION AND FUTURE WORK

We have proposed a practical technique for fast animation of
viscoelastic fluids based on combining a fluid simulation by
SPH and an elastic deformation by SM. Setting a parameter «
realizes various types of materials between a fluid and an
elastic solid. Splitting and merging can be also presented by
controlling the update of the reference shape in SM. Our
method achieves high computational performance with the ease
of changing various types of materials.

In future work, we would like to implement our method on
GPUs or multi-core CPUs. We think that it dramatically
improves the computational performance even on a stand-alone
PC. Another future work is that we would like to extend our
simulator to deal with several different settings of materials at a
time.
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