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Abstract—This paper proposes a practical technique for fast 
animation of materials such as viscoelastic fluids. A fast animation 
of such materials is desperately desirable especially for real-time 
applications such as games. We compute the behavior of 
viscoelastic fluids approximately instead of the exact simulation 
by combining two well-established approaches, Smoothed- 
Particle Hydrodynamics and Shape Matching. This enables fast 
and stable computations. A combination is done by a simple linear 
interpolation of velocities. A variety of materials between a fluid 
and an elastic solid can be represented by changing only a 
parameter of linear interpolation. We also propose how to bring 
our approximate method closer to the actual motions of 
viscoelastic fluids including merging or splitting of objects. We 
demonstrate a high-speed performance of our method with 
presenting several interesting results. 
 

Index Terms—Computer Animation, Viscoelastic Fluids, 
Particle-Based Simulation, Smoothed-Particle Hydrodynamics, 
Shape Matching. 
 

I. INTRODUCTION 

In this paper we describe a practical technique for fast 
animation of materials such as  viscoelastic fluids. Viscoelastic 
fluids are the materials which have both physical properties of 
fluids and elastic solids. By weak forces they keep their original 
shape like an elastic solid, and by strong forces they deform and 
change their shape like a fluid. There are a huge variety of 
materials which represent this type of behavior, e.g., clay, 
chewing gum, toothpaste, shaving cream, gelatin, etc. 
Animations of these materials have recently been successfully 
used in special effects for computer graphics applications. 
Especially for games, fast animation of such materials is 
desperately desirable. 

According to the theory of continuum mechanics [7], the 
difference between a perfect fluid and an elastic solid is 
whether an elastic force, which an object reinstates itself to its 
original shape, is included or not. To simulate the behavior of 
viscoelastic fluids in the literature, the general approaches are 
to introduce elastic forces into the Navier-Stokes equation.  
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Indeed, previous approaches in CG community solve such 
extended governing equations by using an Eulerian grid-based 
fluid simulation [11] or a particle-based Lagrangian fluid 
simulation [10]. These straightforward approaches are, 
however, hard to be processed in real-time. As far as we know, 
there is no approach to simulate viscoelastic fluids fast enough 
to be used in real-time applications. 

We propose a fast and stable method to compute the behavior 
of viscoelastic fluids approximately instead of the exact 
simulation. A key idea here is to combine two well-established 
approaches for fast and stable computations of object motions. 
For computing fluid motions, a Smoothed-Particle Hydro- 
dynamics (SPH) method [14] can be recently used. It is a 
particle-based Lagrangian method and then each particle can be 
moved freely. On the other hand, Shape Matching (SM) 
methods [17, 21] approximately represent motions of elastic 
solids in real-time. They are originally designed for solids, i.e., 
the connectivity of elements (particles) does not change during 
deformations. However, those methods are by nature 
extendable in the case of changing the connectivity of particles. 
A combination is done by a simple linear interpolation of 
current velocities in order to keep the high-speed performance 
and the robustness of an individual method. Consequently, a 
variety of materials between a fluid and an elastic solid can be 
changed by only a parameter of linear interpolation. We also 
discuss how to bring our approximate method closer to the 
actual motions of viscoelastic fluids including merging or 
splitting of objects. 

 

II. RELATED WORK 

2.1  Fluid simulation 

Fluid simulation became widely known in computer graphics 
by a method of Foster and Metaxas [9]. Their method solves 
Navier-Stokes equation, the governing equation of fluids, by 
discretizing using an Eulerian grid. Stam [24] simplified an 
advective term by using the semi-Lagrangian method to 
improve an Eulerian grid-based method with robustly taking a 
large time step. On the other hand, Lagrangian particle methods 
such as Smoothed-Particle Hydrodynamics (SPH) [14] were 
well studied recently. SPH was first introduced in astrophysics 
and Müller et al. [15] successfully used in computer graphics at 
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interactive rates. Adams et al. [1] used an adaptive sampling 
method to improve computational performance. Performances 
were further improved by using GPUs [12]. SPH can also be 
used for representing other types of materials between fluids 
and solids. For example, Solenthaler et al. [23] additionally 
introduced a temperature term to represent melting and 
solidification of objects. 

2.2 Elastic solid animation 

Elastic solid animation was introduced by Terzopoulos et al. 
[26] using a finite difference method. Several other methods 
were also studied such as a mass-spring method [2], a FEM 
method [16], a particle-based method [18]. Those methods are, 
however, time-consuming due to exact and robust solutions of 
elasticity equation. On the other hand, a Shape Matching (SM) 
method originally proposed by Müller et al. [17] is a 
geometry-based approach and imitates an elastic deformation. 
The main advantage is its fast and unconditionally stable 
computation; there is no need to solve the equation of motion. 
Later, its computational performance was further improved by 
using an adaptive sampling [25] or by using a lattice shape [21]. 
As an example to imitate physical motions, Rungjiratananon et 
al. [22] recently extended SM to simulate human's hairstyles. 
Becker et al.[4] used both SPH and SM to represent elastic 
motions. This is most relevant research to ours in the sense that 
SPH and SM can be efficiently combined. The main difference 
is that they integrate the computation of rotation matrices in SM 
into SPH, while our method simply interpolate velocities so as 
to keep the high-speed performance and the robustness of an 
individual method. 

2.3 Viscoelastic Fluids / Viscoplastic solids simulation 

Goktekin et al. [11] realized a viscoelastic fluid simulation 
by taking into account an elastic term to an Eulerian grid-based 
fluid simulation [8]. Bargteil et al. [3] achieved a robust 
viscoplastic solid simulation by using a FEM method and 
remeshing. Several methods based on SPH were also studied 
for considering elasticity, plasticity, and viscosity. Clavet et al. 
[6] added springs between pairs of neighboring particles in SPH. 
Paiva et al. [19] modified the traditional N-S equation and 
employed generalized Newtonian liquid model to simulate 
viscoplastic fluids. Solenthaler et al. [23] introduced a unified 
particle model for the simulation of liquids and deformable 
solids as well as rigid objects. This is the most relevant research 
to ours. Chang et al. [5] introduced more general elastic stress 
term to the N-S equation and changed the viscosity and elastic 
stress coefficients according to the temperature variation. 
Gerszewski et al. [10] applied arbitrary constitutive models to 
compute elastic forces in viscoplastic solids by using 
deformation gradients. All these methods are, however, hard to 
be used in real-time applications. This is mainly because each 
time step has to be set to an extremely small value to robustly 
handle numerical simulations. 

 

III. ANIMATION FRAMEWORK 

In this section, we describe our animation framework to 
compute the behavior of viscoelastic fluids. As described in 
Section 1, a key idea is to combine two well-established 
approaches for fast and stable computations. It should be noted 
that our approach does not solve a combined N-S equation with 
an additional elastic term like as most of previously-published 
approaches. In our approach two fast and stable approaches, 
SPH for fluid simulation and SM for elastic solid deformation, 
are processed independently in each simulation step and two 
velocities are linearly interpolated. A new position is then 
computed by integrating an interpolated velocity. Note that we 
do not consider the plastic deformations, since we use SM to 
represent elastic motions approximately. 

3.1 Combination of SPH and SM 

We briefly introduce two approaches, SPH and SM, at first. 
We then describe how to combine these two approaches. 
 
SPH formulations. SPH is an interpolation method with each 
particle carrying field quantities. A force for each particle 
𝑝𝑝𝑖𝑖  (i = 1 … 𝑛𝑛𝑝𝑝)  is computed based on the physical properties 
of neighboring particle 𝑝𝑝𝑗𝑗 weighted by kernel functions. 
According to the N-S equation, forces for each particle are the 
pressure force 𝒇𝒇𝑖𝑖

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 , the viscosity force 𝒇𝒇𝑖𝑖𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 , and the 
external force 𝒇𝒇𝑖𝑖𝑒𝑒𝑒𝑒𝑒𝑒  including gravity force and collision 
response forces as follows:  
 

 𝒇𝒇𝑖𝑖
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = −�

𝑚𝑚𝑗𝑗

𝜌𝜌𝑗𝑗
𝑝𝑝𝑗𝑗𝛻𝛻𝑊𝑊𝜎𝜎𝑠𝑠��𝒙𝒙𝑗𝑗 − 𝒙𝒙𝑖𝑖��

𝑗𝑗

 (1)  

 𝒇𝒇𝑖𝑖𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 = 𝜇𝜇�
𝑚𝑚𝑗𝑗

𝜌𝜌𝑗𝑗
𝒗𝒗𝑗𝑗𝛻𝛻2𝑊𝑊𝜎𝜎𝑠𝑠��𝒙𝒙𝑗𝑗 − 𝒙𝒙𝑖𝑖��

𝑗𝑗

 (2)  

 
where 𝑚𝑚𝑖𝑖 , 𝜌𝜌𝑖𝑖 = ∑ 𝑚𝑚𝑗𝑗𝑊𝑊𝜎𝜎𝑠𝑠��𝒙𝒙𝑗𝑗 − 𝒙𝒙𝑖𝑖��𝑗𝑗 , 𝒗𝒗𝑖𝑖  are mass, density, 
and velocity vector respectively. Also, 𝑝𝑝𝑖𝑖 = 𝑘𝑘(𝜌𝜌𝑖𝑖 − 𝜌𝜌0), 𝜌𝜌0, 𝑘𝑘, 
𝜇𝜇 denote pressure, initial density, pressure coefficient, and 
viscosity coefficient respectively. Note that neighboring 
particles 𝑝𝑝𝑗𝑗  have to be updated for each simulation step. A 
kernel function 𝑊𝑊𝜎𝜎𝑠𝑠(𝑟𝑟) is defined as follows: 
 

 𝑊𝑊𝜎𝜎𝑠𝑠(𝑟𝑟) =
315

64𝜋𝜋(𝜎𝜎𝑠𝑠)9 ((𝜎𝜎𝑠𝑠)2 − 𝑟𝑟2)3 (3)  

 
Based on three forces described above, an acceleration 

vector 𝒂𝒂𝑖𝑖𝑆𝑆𝑆𝑆𝑆𝑆  is calculated as follows:  
 

 𝒂𝒂𝑖𝑖𝑆𝑆𝑆𝑆𝑆𝑆 =
�𝒇𝒇𝑖𝑖

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 + 𝒇𝒇𝑖𝑖𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 + 𝒇𝒇𝑖𝑖𝑒𝑒𝑒𝑒𝑒𝑒 �
𝜌𝜌𝑖𝑖

 (4)  

 
A position and a velocity vector are updated from such an 

acceleration vector by using the standard Euler method as 
follows:  
 

 𝒗𝒗𝑖𝑖𝑆𝑆𝑆𝑆𝑆𝑆 = 𝒗𝒗𝑖𝑖𝑡𝑡 + ∆𝑡𝑡𝑆𝑆𝑆𝑆𝑆𝑆𝒂𝒂𝑖𝑖𝑆𝑆𝑆𝑆𝑆𝑆  (5)  
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 𝒙𝒙𝑖𝑖𝑆𝑆𝑆𝑆𝑆𝑆 = 𝒙𝒙𝑖𝑖𝑡𝑡 + ∆𝑡𝑡𝑆𝑆𝑆𝑆𝑆𝑆𝒗𝒗𝑖𝑖𝑆𝑆𝑆𝑆𝑆𝑆  (6)  
 
SM formulations. SM imitates an elastic solid deformation. 
Fig. 1 illustrates the original SM scheme. The reference shape 
𝒙𝒙𝑟𝑟𝑟𝑟𝑟𝑟  is rigidly transformed to its goal position 𝒈𝒈 by using a 
rotation matrix 𝑅𝑅 and a transformation vector 𝒕𝒕. We compute 𝒕𝒕 
as a barycenter position, and 𝑅𝑅 by the polar decomposition of a 
linear transformation matrix from 𝒙𝒙𝑟𝑟𝑟𝑟𝑟𝑟  to 𝒙𝒙. A position 𝒙𝒙 of 
each particle is then pulled towards its goal position 𝒈𝒈. 
 

 
 

Fig. 1. Computation of 𝑅𝑅 and 𝑡𝑡 in SM. 
 

Here we slightly extend a method proposed by Rivers and 
James [21] to fit our animation framework. The original 
scheme utilizes a lattice structure to improve computational 
performance. In contrast, our extension adapts the case that 
neighboring particles are arbitrary located. 

For a particle pi (i = 1 … np ), neighboring particles pj  ∈ Ni 
within a support sphere of radius σs  are collected. A goal 
position gi  is then defined as the average of rigidly transformed 
positions from neighboring particles,  

 

 gi =
1

|Ni|
��Rj�xi

ref − xj
ref � + tj�

j

 (7)  

 
where Rj  and tj  are a rotation matrix and a transformation 
vector of rigid motion in each neighbor particle pj . 
 

   
 

Fig. 2. Comparison to the motions in SM with different settings of σs . The 
length of the bar is 40.0. From left to right: σs = 8.0, σs = 5.0, σs = 3.0. 

 
Fig. 2 demonstrates the results for different support radii 𝜎𝜎𝑠𝑠. 

A larger support size makes an object stiffer due to the effect of 
more particles. The computation time also increases much more 
for a larger support size. 

A position and a velocity vector are updated from a goal 
position as follows:  
 

 𝒗𝒗𝑖𝑖𝑆𝑆𝑆𝑆 = 𝒗𝒗𝑖𝑖𝑡𝑡 +
(𝒈𝒈𝑖𝑖 − 𝒙𝒙𝑖𝑖𝑡𝑡)
∆𝑡𝑡𝑆𝑆𝑆𝑆

+ ∆𝑡𝑡𝑆𝑆𝑆𝑆
𝒇𝒇𝑖𝑖𝑒𝑒𝑒𝑒𝑒𝑒

𝑚𝑚𝑖𝑖
 (8)  

 𝒙𝒙𝑖𝑖𝑆𝑆𝑆𝑆 = 𝒙𝒙𝑖𝑖𝑡𝑡 + ∆𝑡𝑡𝑆𝑆𝑆𝑆𝒗𝒗𝑖𝑖𝑆𝑆𝑆𝑆  (9)  
 
Combination by the interpolation of velocities. In our 
combination method, velocities of both SPH and SM are firstly 
updated independently by Equation (5) and (8). Such two 

velocities are linearly interpolated by using only a parameter 
α (0 ≤ α ≤ 1). A new position is then computed by using an 
Euler integration scheme as follows:  
 

 𝒗𝒗𝑖𝑖𝑡𝑡+∆𝑡𝑡 = 𝛼𝛼𝒗𝒗𝑖𝑖𝑆𝑆𝑆𝑆𝑆𝑆 + (1 − 𝛼𝛼)𝒗𝒗𝑖𝑖𝑆𝑆𝑆𝑆  (10)  
 𝒙𝒙𝑖𝑖𝑡𝑡+∆𝑡𝑡 = 𝒙𝒙𝑖𝑖𝑡𝑡 + ∆𝑡𝑡𝒗𝒗𝑖𝑖𝑡𝑡+∆𝑡𝑡  (11)  

 
In addition to the interpolation of velocities described above, 

the use of acceleration vectors or positions can be considered 
for the combination. However, there is a possibility that it is 
computationally unstable due to the division by a small ∆𝑡𝑡. 

Our method can represent various types of materials with 
different physical properties by changing a parameter 𝛼𝛼. Fig. 3 
compares the shapes of cubes with different 𝛼𝛼 when they are 
fallen on the floor. As shown in this figure, a cube deforms like 
an elastic solid with 𝛼𝛼 = 0.0, and a cube flows like a fluid with 
𝛼𝛼 = 1.0. Also, a viscoelastic behavior can be presented when 𝛼𝛼 
is set to an intermediate value between 0 and 1. An elastic 
property is greatly appeared as like a jelly with 𝛼𝛼 = 0.3, and a 
fluid property is stronger as like a toothpaste with 𝛼𝛼 = 0.7 in 
Fig. 3. 
 
Adjusting the movement of particles. In SPH, a time interval 
∆𝑡𝑡𝑆𝑆𝑆𝑆𝑆𝑆  is dynamically changed to keep the simulation stable. 
∆𝑡𝑡𝑆𝑆𝑆𝑆𝑆𝑆  is controlled so as not to move larger than a support 
radius of a particle in each simulation step, i.e., ∆𝑡𝑡𝑆𝑆𝑆𝑆𝑆𝑆  is set in 
order to satisfy the following inequation;  
 

 ∆𝑡𝑡𝑆𝑆𝑆𝑆𝑆𝑆 ∙ max��𝒗𝒗𝑖𝑖𝑆𝑆𝑆𝑆𝑆𝑆 �� < 𝜎𝜎𝑠𝑠 (12)  
 
where max��𝒗𝒗𝑖𝑖𝑆𝑆𝑆𝑆𝑆𝑆 ��  denotes a maximum value of the 
magnitude of velocities for all particles. If a velocity is large, a 
time interval is set to a small value and then the movement 
distance of a particle in each step becomes small. 

On the other hand, ∆𝑡𝑡𝑆𝑆𝑆𝑆  has little effect on the movement of 
particles in SM. In Equation (8) a velocity becomes large for a 
small ∆𝑡𝑡𝑆𝑆𝑆𝑆 . However, in Equation (9) a position is updated by 
adding a velocity multiplied with ∆𝑡𝑡𝑆𝑆𝑆𝑆 , then the effect of ∆𝑡𝑡𝑆𝑆𝑆𝑆  
gets balanced out. Consequently, the effect of a fluid over the 
elasticity is relatively changed with different settings of ∆𝑡𝑡𝑆𝑆𝑆𝑆𝑆𝑆 . 

To resolve this issue, the movements of particles in SM are 
adjusted by a time interval ∆𝑡𝑡𝑆𝑆𝑆𝑆𝑆𝑆 . That is, Equation (8), a 
formula for computing the velocity, is re-written as follows:  

 

 𝒗𝒗𝑖𝑖𝑆𝑆𝑆𝑆 = 𝒗𝒗𝑖𝑖𝑡𝑡 +
∆𝑡𝑡𝑆𝑆𝑆𝑆𝑆𝑆

∆𝑡𝑡0
𝑆𝑆𝑆𝑆𝑆𝑆 �

(𝒈𝒈𝑖𝑖 − 𝒙𝒙𝑖𝑖𝑡𝑡)
∆𝑡𝑡𝑆𝑆𝑆𝑆

+
∆𝑡𝑡𝑆𝑆𝑆𝑆𝒇𝒇𝑖𝑖𝑒𝑒𝑒𝑒𝑒𝑒

𝑚𝑚𝑖𝑖
� (13)  

 
The second term on the right of Equation (8) is scaled to 

follow the dynamic change of ∆𝑡𝑡𝑆𝑆𝑆𝑆𝑆𝑆  over its initial value 
∆𝑡𝑡0

𝑆𝑆𝑆𝑆𝑆𝑆 . Therefore, a position and a velocity in SM are 
automatically controlled in a balanced manner. The adjustment 
of a time interval occurs when the density of particles becomes 
high, e.g. a collision against other objects. In this case, 
velocities of particles become large due to the high pressure 
forces. In our experiments, we set ∆𝑡𝑡0

𝑆𝑆𝑆𝑆𝑆𝑆 = ∆𝑡𝑡𝑆𝑆𝑆𝑆 = 0.15 and a 
50 percents smaller ∆𝑡𝑡𝑆𝑆𝑆𝑆𝑆𝑆  in maximum than ∆𝑡𝑡0

𝑆𝑆𝑆𝑆𝑆𝑆  is observed 
during the simulation. 

 

𝑥𝑥2
𝑟𝑟𝑟𝑟𝑟𝑟  

𝑥𝑥1
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𝑥𝑥3
𝑟𝑟𝑟𝑟𝑟𝑟  

𝑥𝑥1 
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𝑥𝑥1 

𝑥𝑥2 𝑔𝑔2 
𝑔𝑔3 𝑡𝑡 

𝑅𝑅 
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3.2 Splitting and Merging 

Splitting or merging frequently occurs in the viscoelastic 
materials. A viscoelastic object in general is split into two small 
objects when external forces stronger than internal elastic 
forces are applied to a part of its body. Two objects are merged 
when external forces of objects collided with each other exceed 
over their internal forces. 

Since in SPH each particle moves freely and the arrangement 
of particles is not fixed, splitting and merging naturally occur. 
However, in the original SM, a reference shape is used to keep 
its original shape as an elastic solid. The arrangement of 
particles in such a reference shape is fixed during the 
simulation. Therefore, splitting or merging never occurs due to 
the fixed reference shape. We apply here the following two 
extensions to establish splitting and merging with SM. 
 
Update reference shape based on material properties. We 
update a reference shape during the simulation in contrast to the 
original SM. When a reference shape is updated, neighboring 
particles in each particle are possibly changed. Splitting or 
merging can occur according to the relationship between 
neighbor particles. Note that the computational cost of such 
update is subtle since the neighboring particles are already 
constructed in SPH and can be reused. 

Several factors are considered to check whether the reference 
shape is updated or not. Firstly, the change of the object shape 
is one of key factors. Here we consider external forces adding 
to an object. This is because that a topological change of a 
viscoelastic fluid is thought to be caused by suffering external 
forces. We then check whether a reference shape is updated or 
not by the magnitude of external forces. Let |𝒇𝒇𝑒𝑒𝑒𝑒𝑒𝑒 |  be an 
average of the magnitude of external forces for all particles. A 
reference shape is updated if |𝒇𝒇𝑒𝑒𝑒𝑒𝑒𝑒 | > 𝑓𝑓𝑢𝑢 , where 𝑓𝑓𝑢𝑢  denotes a 
threshold. It should be noted that 𝑓𝑓𝑢𝑢  is an important parameter 
to check the update of the reference shape, e.g., setting a larger 
𝑓𝑓𝑢𝑢  tends to be harder to update the reference shape. 

Another key factor to check the update of the reference shape 
is the physical property of an object. In the case of the elastic 
solid, a reference shape does not want to be updated despite 
huge external forces. Also, a reference shape wants to be 
updated for each step in case of a fluid. To satisfy both demands, 
we relate a parameter 𝛼𝛼 to 𝑓𝑓𝑢𝑢 . For a small 𝛼𝛼 an object is close to 
an elastic solid, and then 𝑓𝑓𝑢𝑢  should be set to a large value. On 
the contrary, it is desirable for a fluid to set 𝑓𝑓𝑢𝑢  to a small value 
for a large 𝛼𝛼. 

 

We then define a monotonically decreasing function as 
shown in Fig. 4 to compute 𝑓𝑓𝑢𝑢  according to 𝛼𝛼 as follows:  
 

 𝑓𝑓𝑢𝑢 = 𝛾𝛾𝑢𝑢(1 − 𝛼𝛼) (14)  
 
where 𝛾𝛾𝑢𝑢  denotes a value of  𝑓𝑓𝑢𝑢  for 𝛼𝛼 = 0. This function is 
especially useful in the animation which  𝛼𝛼  is varied 
continuously. 

 

 
Fig. 4. A fu − α  function to compute fu  according to α. 

Setting the number of simulation steps for updating 
reference shape. If the update of the reference shape is applied 
in every simulation step, the reference shape is deformed like a 
fluid. A viscoelastic motion cannot then be realized. So, it is 
better to have a certain interval to check the update. Here we 
introduce a parameter 𝑚𝑚𝑢𝑢  and check the update if the number 
of simulation steps reaches 𝑚𝑚𝑢𝑢 . We empirically set 𝑚𝑚𝑢𝑢  2-3 
times larger than fps in our simulator to work our check well at 
reasonable computation time. 

3.3 Algorithm 

We now describe our whole algorithm below. 𝑐𝑐 denotes the 
number of simulation steps to be used for checking the update 
of the reference shape. 
 
𝑐𝑐 ← 0; 
loop 
    if 𝑐𝑐 mod 𝑚𝑚𝑢𝑢 = 0 then 
        if  |𝒇𝒇𝑒𝑒𝑒𝑒𝑒𝑒 | > 𝑓𝑓𝑢𝑢  then 
            𝒙𝒙𝑟𝑟𝑟𝑟𝑟𝑟  ←  𝒙𝒙𝑡𝑡 ; {Update of the ref. shape} 
        end if 
    end if 
    Adjust ∆𝑡𝑡𝑆𝑆𝑆𝑆𝑆𝑆 ; {Eq. (12)} 

     
 α=0.0 α=0.3 α=0.7 α=1.0 

t=0  t=0.8  
 

Fig. 3. Comparison of the shapes of fallen cubes with various setting of α. 

𝑓𝑓𝑢𝑢  

𝛼𝛼 
1 0 

𝛾𝛾𝑢𝑢  
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    Compute 𝒗𝒗𝑆𝑆𝑆𝑆𝑆𝑆 ; {Eq. (5)} 
    Compute 𝒗𝒗𝑆𝑆𝑆𝑆 ; {Eq. (8)} 
    Compute 𝒗𝒗𝑡𝑡+∆𝑡𝑡 , 𝒙𝒙𝑡𝑡+∆𝑡𝑡 ; {Eq. (10), (11)} 
    (Option) Rendering by 𝒙𝒙𝑡𝑡+∆𝑡𝑡 ;  
    𝒗𝒗𝑡𝑡  ←  𝒗𝒗𝑡𝑡+∆𝑡𝑡 ; 
    𝒙𝒙𝑡𝑡  ←  𝒙𝒙𝑡𝑡+∆𝑡𝑡 ; 
    𝑐𝑐 ← 𝑐𝑐 + 1; 
end loop 
 

3.4 Rendering 

Just after positions are updated, we render the surface of the 
current particles. Although a lot of methods for the rendering of 
SPH particles have been recently proposed, we adopt a simple 
method. We first create an implicit distance field on a regular 
grid covering particles, and then extract an iso-surface by using 
Marching Cubes algorithm [13]. 

 
(a) “Moai”, 𝛼𝛼 = 0.0, 𝑡𝑡 = 0.0 (left), 18.6 (middle), 34.8 (right). 

 
(b) “Armadillo”,  𝛼𝛼 = 0.8,  𝑡𝑡 = 0.0 (left), 12.0 (middle), 35.6 (right). 

 
(c) “Bunny”,  α = 0.85,  t = 0.0 (left), 15.2 (middle), 38.1 (right). 

 
(d) “Four balls in a pool”,  α = 0.9,  t = 0.0 (left), 26.5 (middle), 43.25 (right). 

 
Fig. 5. Experimental results of our method with different settings of  α.(Color Plate 5) 
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To achieve fast rendering, we first extract a part of particles 
which are on the surface, and a distance field is then created 
from those particles. In SPH, a particle on the surface tends to 
have less neighboring particles than an inner particle, and then 
its density is lower. Therefore we consider as a particle on the 
surface if its density 𝜌𝜌𝑖𝑖  is less than a threshold 𝜌𝜌𝑠𝑠.  

 

IV. RESULTS AND DISCUSSION 

We discuss our results in this section. All our experiments were 
performed using a notebook PC with Intel Core 2 Duo P8700 
2.53GHz CPU and nVIDIA GeForce GT 130M GPU. Table 1 
presents the statistical results of our experiments. 

Our input is a set of 3D solid points. To create uniformly- 
sampled points from polygonal meshes, we used 3D Delaunay 
triangulations in CGAL [20]. Note that we used only vertices of 
the output tetrahedra as our input. Resulting images are created 
by using Sunflow [27], an open source global illumination 
renderer. 

Fig. 5(a) shows the “Moai” model (3,764 points) with setting 
𝛼𝛼 = 0.0. As can be seen from this figure, its motions are like an 
elastic solid and keep its original shape even after being 
bounced on the floor. It is to be noted that a support size is set to 
a large value to establish stiffer motions, and the average 
number of neighboring particles therefore becomes large. Also, 
a SM in our method is obviously slower than the original 
method in [21], because we adapt our method to the case that 
neighboring particles are arbitrary located. 

Fig. 5(b) shows the “Armadillo” model (4,157 points) with 
setting 𝛼𝛼 = 0.8. Its motions are like an elastic solid but a fluid 
property is also included. As shown in this figure, an object is 
collided and is spread on the floor; however, its shape is not 
perfectly collapsed. 

Fig. 5(c) shows the “Bunny” model (4,185 points) with 
setting 𝛼𝛼 = 0.85 . Its motions are like a fluid with some 
elasticity. This experiment presents an example of splitting and 
merging; we can see that an object is once collided with a 
hemisphere and is split into several parts. They are finally 
merged on the floor. 

Fig. 5(d) shows four balls dropped in the pool with setting 
𝛼𝛼 = 0.9 . Its motions are also like a fluid with a little bit 
elasticity. It can be seen that a ball is dropped and is merged 
into the pool water. 

Concerning about the computational performance of our 
method, most time-consuming part is caused by computing 
positions in SM, especially when the number of neighboring 
particles is large. Our method is still competitive because it 
keeps more than 5 times faster compared to other recently 
proposed methods for viscoelastic motions [19, 5, 10]. The 
method by Paiva et al. [19] is the fastest among three 
approaches. The computation of “Pressing Cube” composed of 
approximately 6K particles is at 1.81 FPS on a Centrino 
1.86GHz CPU as shown in [19]. In contrast our method 
establishes 14 FPS by a similar experiment. 

 

V. CONCLUSION AND FUTURE WORK 

We have proposed a practical technique for fast animation of 
viscoelastic fluids based on combining a fluid simulation by 
SPH and an elastic deformation by SM. Setting a parameter α  
realizes various types of materials between a fluid and an 
elastic solid. Splitting and merging can be also presented by 
controlling the update of the reference shape in SM. Our 
method achieves high computational performance with the ease 
of changing various types of materials. 

In future work, we would like to implement our method on 
GPUs or multi-core CPUs. We think that it dramatically 
improves the computational performance even on a stand-alone 
PC. Another future work is that we would like to extend our 
simulator to deal with several different settings of materials at a 
time. 
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