
The International Journal of Virtual Reality, 2012, 11(1):25-32 25

Abstract—The establishment of a good correspondence

mapping is a key issue in planar animations such as image

morphing and deformation. In this paper, we present a novel

mapping framework for animation of complex shapes. We firstly

let the user extract the outlines of the interested object and target

interested area from the input images and specify some optional

feature lines, and then we generate a sparse delaunay

triangulation mesh taking the outlines and the feature lines of the

source shape as constraints. Then we copy the topology from the

source shape to the target shape to construct a valid triangulation

in the target shape. After that, each triangle of this triangular

mesh is further segmented into a dense mesh patch. Each mesh

patch is parameterized onto a unit circle domain. With such

parametrization, we can easily construct a correspondence

mapping between the source patches and the corresponding target

patches. Our framework can work well for various applications

such as shape deformation and morphing. Pleasing results

generated by our framework show that the framework works

well.

Index Terms—image morphing, image deformation, image

editing, sketched based editing, 2d shape animation,

correspondence mapping.

I. INTRODUCTION

Planar shape deformation and animation are ubiquitous in a lot

of applications. Examples of ongoing use include digital

compositing in CG productions, cel animation and web

graphics, etc. Despite the voluminous literature on the subject,

there remain many ways in which current 2D techniques can be

improved upon.

As the basic operation in many 2D applications, image

deformation has been an active research area in computer

graphics for a long time. Researches in this area could be

roughly classified into two categories. The first one is to deform

the space in which the target shape is embedded. The work of [1]

used a skeleton to define the deform space. Each point in the

shape is associated with a coordinate frame defined by a bone.

[2] proposed a moving least squares based image deformation

technique. Various linear functions including affine, similarity

and rigid transformations were used to create realistic

deformation while providing closed-form expressions for each

Manuscript Received on October 10, 2011
E-mail: {Jianlong.Zhou | Ivan.Lee | Bruce.Thomasg}@unisa.edu.au

of them. Their work was further enhanced in [3] with a

sketch-based interface, fold-over reduction and performance

acceleration. [4] generalized barycentric coordinates from real

numbers to complex numbers and applied the technique for

planar shape deformation. Their method produced results

superior to state-of-the-art methods at a small extra cost in

computational complexity, in pre-processing time only. In [5],

the authors described a novel 2D shape deformation system

which generated conformal maps, yet provides the users with a

large degree of control over the result. The second kind of

deformation technique deforms the shape taking its structure

into account. These methods usually adopts some physically

based models, mostly mass-spring models, to guide the

deformation. Instead of using physically based models, [6]

achieved an as-rigid-as-possible deformation effect by

geometrically minimizing the distortion associated with each

triangle in a mesh. Their technique shared certain similarity

with the technique used in [7].

Morphing technique can produce compelling transitions

between objects through continuous evolution from the source

into the target. It is commonly applied in scientific visualization,

film animation and advertising industries. There are two

well-understood major issues in morphing. The first is how to

conveniently establish a reasonable correspondence mapping

between the source and the target, known as the

correspondence problem. A popular solution to this problem is

to let a user firstly prescribe some feature points [8], line

segments [9] on both the source and target images. Then the

correspondence for every pixel in the image could be further

established through mesh-based techniques, radial basis

functions [8], and contouring. The second is how to define the

way of transforming the source shape transformed into the

target shape, known as the path problem. Usually, in particular

in the context of image morphing, the path problem is solved

using linear interpolation, though more advanced interpolation

schemes can be utilized as well. The path problem for

two-dimensional polygons was discussed in [10], where

interpolation was performed on edge lengths and angles. In [11],

the interior of the polygon as well as its boundary were taken

into account. In [12] , a different representation of polygons,

with a multi-resolution character was proposed.

A key issue in both image deformation and morphing is to

construct a mapping either between the shapes before and after

editing (deformation) or between the source and target shapes

(morphing). Earlier methods usually defined a certain warping

function for such mapping. As shape based editing (where the

Sketch Based Image Deformation and Editing

with Guaranteed Feature Correspondence

 Yaqiong Liu
1
, Seah Hock Soon

1
, Ying He

1
, Juncong Lin

2
, and Jiazhi Xia

3

1
 School of Comoputer Engeering at Nanyang Technological University

2
Xiamen University, China

3
Central South Univeristy, China

The International Journal of Virtual Reality, 2012, 11(1):25-32 26

domain is a complex shape other than a simple regular domain) becomes popular recently [7], [6], some more recent work tends

to establish a mapping to construct a compatible triangulation.

In [13,7], they generated a compatible triangulation by

mapping the bounding polygons onto a common domain.

These methods are conceptually simple but not optimal in

terms of the runtime (O(n
3
)) or in number of Steiner vertices

introduced (O(n
2
)). In [14,15,16], they used a

divide-and-conquer strategy to recursively partition the

polygon into triangles. These methods are better in time

complexity (O(n
2
 logn)) and often without Steiner vertices.

However, they are algorithmically quite complex.

In this paper, we present a novel system for shape aware

image deformation and morphing (Fig. 1). The key component

of our system is a novel framework that constructs a

correspondence mapping between the shape before and after

editing (for deformation), or between the source and the target

shapes (for morphing). Given the input image, we firstly

extract the outlines of the interested object and specify some

feature lines which can help convey the shape. We then

construct a triangular mesh through delaunay triangulation

taking the outlines and the feature curves as constraints. The

triangular mesh is further segmented into patches. After that,

each mesh patch is parameterized onto a unit circle domain.

With the parametrization, we can easily construct a

correspondence mapping between the patches of the source

shape and the patches of the target shape for various

applications such as shape deformation and morphing. [17]

proposed a detail preserving shape deformation method in

image editing. Their image editing system decoupled feature

position from pixel color generation by resynthesizing texture

from the source image to preserve its detail and orientation

around a new feature curve location. They constructed a dense

correspondence between the source and target images

generated by the control curves and then used this

correspondence to synthesize texture. Our framework can be

applied for image deformation and image morphing and other

applications. Both of [17] and our method can preserve the

details of the image after image editing. However, our

framework supplies more types of feature constraints for users,

for example, points constraint (Fig. 3(b)).

II. OVERVIEW

In this section, we describe the whole framework of our

method as shown in Fig. 2. Given the input image I containing

an object O⊂ I, the user firstly extracts the object's outline (Fig.

2(a)) which is defined as a set of non-intersecting simple

closed curves. The outline could be easily extracted with

available tools such as lazy snapping [18]. The user can also

specify some major features of the shape using strokes. Then

the system generates a delaunay triangular mesh taking the

outlines and the feature lines as constraints (Fig. 2(c)). Each

subregion of this triangular mesh is further divided into mesh

patches. As we form a one-to-one mapping of the feature

constraints of the source shape and the feature constraints of

the target shape, there is a one-to-one mapping between each

patch of the source triangular mesh and the corresponding

patch of the target triangular mesh. We map each mesh patch

onto a common circular domain. Equipped with this

parametrization, we can conveniently construct a

correspondence mapping for 2D shape animations. For shape

morphing, we firstly generate the intermediate contours using

linear blending or more complex existing methods [10]. We

then generate the intermediate triangular mesh from the source

and the target meshes with the corresponding mapping

constructed by the third step mentioned above. This triangular

mesh has similar patch layout as source and target (Fig. 2(d)).

Afterwards we fill in the pixels of the intermediate shape.

Similarly, each patch of the intermediate shape is also

parameterized onto a unit circle. We can finally construct a

mapping among the source shape, the intermediate shape, and

the target shape, and each pixel of the intermediate shape will

be filled by linear interpolation of the color values of the

corresponding pixels in the source and the target shapes. For

image deformation, we determine the affected area according

to a user's operation. Thus, we can get the shape contours of

the affected area before and after users' editing. We then

update the triangular mesh part of the affected area and

parameterize it onto the unit circle. Hence, we can construct

the mapping between the shape before and after editing. The

pixels will be transferred to the edited part (Fig. 2(e)).

III. CORRESPONDENCE ESTABLISHMENT

3.1 Guaranteed Feature Correspondence

Our system allows users to specify feature constraints at the

The International Journal of Virtual Reality, 2012, 11(1):25-32 27

beginning. These feature constraints include boundaries,

points, strokes, and circles (Fig. 3). A boundary is absolutely

necessary, for we can identify the interested area through this

boundary. For image morphing and editing, after specifying

feature constraints of the source shape, users

Fig. 2. Flowchart of our 2d shape animation system: (a) source object; (b) feature lines; (c) triangular mesh and patch layout;

(d) morphing results sequence: original object, intermediate object, target object; (e) Editing steps: sketched target shape and
feature lines, and we obtain the new image.

specify the feature constraints of the target shape in the same

order as the source. Therefore, we can get a one-to-one

mapping between the feature lines in the source and target

shape. After users' operation, our system samples points along

each feature constraint with the same quantity automatically.

Thus we obtain a one-to-one mapping between a feature point

in the source shape and the corresponding feature point in the

target shape.

Fig. 3. Different types of feature constraints: (a) boundary; (b) points; (c)
strokes; (d) circle.

3.2 Patch Correspondence

Next, our system applies a delaunay triangulation only to

the source shape with these sampled points along feature lines.

Thus we get a connectivity relationship among these points in

the source shape. Then our system automatically connects the

corresponding points in the target shape according to the same

connectivity. However, only by copying the connectivity

topology from the source to the target, we sometimes cannot

avoid self-intersection in the triangulation of the target shape.

To solve such a problem, our system also allows users to move

the position of those sampled points in order to obtain a valid

delaunay triangulation of the target shape (Fig. 5(b))(If there

are holes in this mesh, each of these polygonal holes is also a

rough patch). Therefore, each triangle (or hole) t of the

delaunay triangulations can be regarded as a rough patch. As

the source and target triangular mesh have the same

connectivity topology, they have equal numbers of rough

patches and each rough patch in the source shape has one and

only one corresponding rough patch in the target shape. Hence,

a rough patch-to-patch correspondence has been constructed.

However, each rough patch t is still a relatively large

triangle or a polygon. Thus, in addition to the delaunay

triangulation which is sparse, we also apply a dense

triangulation to each rough patch t of both source and target

shape (Fig. 2(c), Fig. 5(c)). This does not change the rough

patch-to-patch correspondence. Thus patch correspondence

has been constructed (Fig. 4).

IV. KEY STEPS ANALYSISR

4.1 Triangulations

Our system applies three kinds of triangulations in total. The

first triangulation is a Delaunay triangulation applied to the

source shape. After copying the connection topology from the

source shape to the target shape, we get a rough patch-to-patch

correspondence, each large triangle or polygonal hole is a

rough patch.we apply a detailed triangulation to each triangle

of the Delaunay meshes. We then apply a dense triangulation

to each of these rough patches respectively. This is called the

second kind of triangulations.

Thus, it appears that we have obtained valid patches based

on dense triangulations and obtained a whole dense triangular

mesh. However, as we apply a dense triangulation Tri1 to each

rough patch separately, there may be different numbers of

points on the common edges of two adjacent patches. To solve

this problem, we apply a ReTriangulation Tri2 to each patch.

The re-triangulation procedure is detailed in Algorithm 1.

The International Journal of Virtual Reality, 2012, 11(1):25-32 28

4.2 Constraint Map

Let Ps ∈ Os and Pt ∈ Mt be the pair of segmented patches,

each of which is a genus-0 surface with only one boundary.

We want to find a bijective and smooth map Ø : Ps→Pt .

Rather than computing the map directly, we first parameterize

Ps to the unit disc using harmonic map, i.e., f : Ps → D such

that △ f = 0 and f maps the boundary of Ps to the boundary of

D using arc length parametrization, f (∂Mi) = ∂D. Similarly,

we also parameterize Pt to the unit disc using harmonic map g :

Pt → D. More details of discrete harmonic map could be

Found at [19].

Fig. 4. How patch correspondence is established.

Then we seek a smooth map between two unit discs h : D

→ D. This map h is also computed using harmonic map △ h

= 0 and the boundary condition is set as follows: Let s1, s2

and s3 be the sample points on ∂Mi, and f (s j) ∈ ∂D, j = 0, 1,

2 be the images on the boundary of unit disc. Similarly, let

g(s′j) ∈ ∂D be the images of the sample points s′j∈ Pi. Then

we require the function h maps f (s j) to g(s′j), i.e., h◦ f (s j) =

g(s′j), j = 0, 1, 2. The images for the points between f (s j) and

f (s(j+1)%3), j = 0, 1, 2, are computed using arc length

parametrization.

Finally, the correspondence mapping between the two

patches is given by the composite map Ø = f ◦ h ◦ g
−1

 as

shown in the following commutative diagram:

Fig. 6. Demonstrates the results of the constraint map.

User can take full control of the correspondence using

simple sketches as the boundary condition.

4.3 Pixel Operation

After the correspondence mapping between two patches

has been constructed, we join all the patches together to form

one single triangular mesh for both the source and target

shapes, and thus we can get the source mesh S and the target

mesh T. At the same time, the correspondence mapping

between the source mesh S and the target mesh T can be also

obtained.

1) Shape Morphing: For shape morphing, to calculate

the intermediate shapes between the source shape and the

target shape, we need two steps. In the first step, we calculate

the outlines of the intermediate shapes. In the second step,

we calculate each pixel of the intermediate shape. To

determine each point in each intermediate shape, we use the

following steps.

Step 1: determine the triangle mesh M of the intermediate

shape according to the correspondence mapping between the

source mesh and the target mesh.

Step 2: for each point p in the intermediate shape,

determine the specific triangle t in which it locates in the

intermediate mesh.

Step 3: calculate the barycentric coordinates of p about

The International Journal of Virtual Reality, 2012, 11(1):25-32 29

triangle t.

Step 4: find a pair of corresponding points of p separately

in the corresponding triangle t1 in the source mesh S and the

corresponding triangle t2 in the target mesh T. Let p1, p2

denote these two points respectively.

Step 5: use linear interpolation of the pixel values of p1

and p2 to determine the pixel value of p.

These are ordinary steps. Our system gets pleasing results

such as human faces, flowers, leaves, fruits, cartoon

characters and some other shapes, as shown in Fig. 10.

2) Shape Editing: For shape editing, there is no need to

calculate the intermediate shape. We can just transfer the

pixel values in the source shape to the corresponding pixels

in the target shape according to the correspondence mapping

between the source mesh S and the target mesh T. Our

system also gets pleasing results as shown in Fig. 11.

V. APPLICATIONS

We now show how to use the correspondence mapping to

realize various 2D shape animation effects taking shape

morphing and shape deformation as examples.

5.1 Shape Morphing

There are two steps in the shape morphing. We firstly

generate the outlines and the feature curves of the

intermediate shape. This can be easily done with linear

interpolation or existing more complex methods like [10]. In

the second step, we then fill in the pixels of the shape. For

Fig. 5. Realization of morphing with our correspondence mapping
method. (a) Morphing shapes; (b) Triangular meshes. Delaunay

triangulation applies to both source and target images. Each of the

triangles is a triangular patch. (c)The corresponding patches and
corresponding pixels; (d) The parametric domains of patches and the

image points of the corresponding pixels; (e) determine the pixel

correspondence in the parametric domain.

Fig. 6. Constraint mapping of the two patches. (a) source patch layout

and take the yellow patch for example; (b) target patch layout and target

corresponding example patch; (c) details of this yellow patch; (d) target
corresponding patch; (e) parameterize this patch to circular domain; (f)

a circular mesh parameterized from the target corresponding patch.

The International Journal of Virtual Reality, 2012, 11(1):25-32 30

each pixel of the intermediate shape, we firstly find the

triangle it locates in, and compute its barycentric coordinate.

We can then find its image in the parametrization domain

with the same triangle and same barycentric coordinate.

After that, we can find the corresponding pixels in the source

and target that have the same image in the parametrization

domain. We first determine the source (or target) triangle the

image point located in and calculate the barycentric

coordinate in the triangle. We can similarly find the pixel in

the source (target) shape in a reverse way with the same

triangle and same barycentric coordinate. Finally, given the

colors of the pixels ps, pt, denoted as c(ps) and c(pt)

respectively, the final color of pixel p, c(p), is set to be:

c(p) = w · c(pt)+(1−w) · c(ps)

5.2 Image Editing

Fig. 7. Implementation of image deformation with our method. As shown in

(a), a user sketches the original feature and the target feature on one single
image. (b) Our system treats these feature lines the same as the morphing

process. (c) shows the delaunay triangulation of the source and target object.

(d) shows the deformation result.

Our system also provides a similar sketching interface for

image editing [20]. Users simply draw a new boundary shape

as the interested editing area. They could also draw interior

feature lines as other feature constraints. The system then

constructs a triangular mesh of both the original shape and

the new shape and parameterize each patch of these two

triangular meshes onto a unit circle. Hence, the system

obtains a correspondence mapping between the source shape

and the target shape. Finally, the interior of the new shape

will be filled by the pixels from the original shape through

the correspondence mapping. Details of image editing are

shown in Fig. 7.

Fig. 8. Our method works well on bunny ears.

VI. RESULTS ESTIMATION

We have implemented a prototype system of the described

method in C++ running on a workstation with an Intel Xeon

2.67-GHz CPU and 8 GB RAM. Our method is conceptually

simple and easy to implement. It is also quite efficient.

Sparse linear systems and 2D triangulation are involved. The

time statistics of the main steps are listed in Table I.

Although simple, our method is quite effective and provides

pleasing results as shown in Fig. 1. More morphing

examples could be found in Fig. 10, and deformation

examples could be found in Fig. 11.

Compared to [17], our method can also work well on some

figures such as long bunny ears(Fig. 8) with user specified

feature constraints. The difference between our method and

the method of [17] is that our framework can work well on

most of the figures with smooth texture, while [17] applies

image synthesis to smooth neighboring patches of figures

with uneven texture.

TABLE 1. TIME STATISTICS OF THE MAIN STEPS IN OUR

FRAMEWORK.

Fig. 9. Example triangulations with different resolutions. The

numbers of vertices are 208, 381, 486 respectively.

VII. CONCLUSION

In this paper, we present a simple yet efficient method that

uses guaranteed feature correspondence to realize sketch

based image morphing and image editing. For each of the

two shapes that need a correspondence mapping between

them, we generate a triangular mesh taking the outlines and

the feature lines of the shape as constraints. The triangular

mesh is further divided into patches. We then parameterize

each patch onto a unit circular domain. With the

parametrization, we can build the corresponding mapping of

each pair of corresponding patches, and then build the

corresponding mapping of the whole shapes. The efficiency

and effi cacy of this method are shown through various

morphing and deformation examples.

The main contribution of this paper is that we proposed a

method that constructs a guaranteed patch correspondence to

edit images from user-controllable feature constraints in an

intuitive manner. Thus in computer animation area, there has

been a new method that can be used to realize image editing

and deformation. Users are able to control the number of the

feature curves and feature types. Many results indicate that

users do not need to sketch as many feature curves as

The International Journal of Virtual Reality, 2012, 11(1):25-32 31

possible. Approximate feature constraints are enough.

Fig. 10. Morphing results generated with our method (Color Plate 7)

Fig. 11. Deformation examples designed with our framework (Color Plate

8)

However, as mentioned in Section 3.2, copying topology

from source to target may cause self-intersection. In practice,

this is mainly depended on the feature constraints. Different

number of sampled points along the feature lines lead to

different triangulations, while in most of the cases, the target

triangulation is valid. Thus our system allows users to move

the position of the feature points easily and freely if required,

to guarantee a valid triangulation. However, this operation

may take up users’ time. Normally, users can only spend less

than one minute to move the position of the feature points

because in such occasions, there are only several triangles

that intersects each other.

In the future, we will continue focusing on this topic to

work out a solution that could avoid self intersection and

enable the automatic detection of the feature lines.

Meanwhile, we will try to extend the method to 3D

animation/morphing, in particular, for the shapes of different

topology.

REFERENCES

[1] J. Lewis, matt Cordner, and N. Fong, “Pose space deformation: a

unified approach to shape interpolation and skeleton driven

deformation,” in Proc of ACM SIGGRAPH, 2000, pp. 165–172.
[2] S. Schaefer, T. McPhail, and J. Warren, “Image deformation using

moving least squares,” ACM Transacitons on Graphics, 25(3), pp.

533–540, 2006.
[3] Y. Weng, X. Shi, H. Bao, and J. Zhang, “Sketching mls image

deformations on the gpu,” Computer Graphics Forum, 27(7),

pp.1789–1796, 2009.
[4] O. Weber, M. Ben-Chen, and C. Gotsman, “Complex barycentric

coordinates with applications to planar shape deformation,” Computer

Graphics Forum, 28(2), 2009.
[5] O. Weber and C. Gotsman, “Controllable conformal maps for shape

deformation and interpolation,” ACM Transacitons on Graphics,

29(4), 2010.
[6] T. Igarashi, T. Moscovich, and J. F. Hughes, “As-rigid-as-possible

shape manipulation,” ACM Transacitons on Graphics, 24(3), pp.

107–116, 2005.

[7] M. Alexa, D. Cohen-Or, and D. Levin, “As-rigid-as-possible shape

interpolation,” in Proc of ACM SIGGRAPH 2000, 2000, pp. 157–164.

[8] N. Arad and D. Reisfeld, “Image warping using few anchor points and
radial functions,” Computer Graphics Forum, 14(1), pp. 35–46, 2003.

[9] T. Beier and S. Neely, “Feature-based image metamorphosis,” in Proc

of ACM SIGGRAPH, vol. 26, 1992, pp. 35–42.
[10] T. W. Sederberg, P. Gao, G. Wang, and H. Mu, “2d shape blending:an

intrinsic solution to the vertex path problem,” in Proc of ACM

SIGGRAPH, vol. 27, 1993, pp. 15–18.
[11] M. Shapira and A. Rappoport, “Shape blending using the star-skeleton

representation,” IEEE Computer Graphics and Applications, vol. 15,

pp. 44–50, 1995.
[12] E. Goldstein and C. Gotsman, “Polygon morphing using a

multiresolution representation,” in Proc of Graphic Interface, 1995,

pp. 247–254.
[13] A. Tal and G. Elber, “Image morphing with feature preserving texture,”

Computer Graphics Forum, 18(3), pp. 339–348, 1999.

[14] V. Surazhsky and C. Gotsman, “High quality compatible
triangulations,” Engineering with Computers, 20(2), pp. 147–156,

2004.

[15] H. Gupta and R. Wenger, “Constructing piecewise linear homeomor-
phisms of simple polygons,” Journal of Algorithms, 22(1), pp.

142–157, 1997.

[16] W. Baxter, P. Barla, and K.-i. Anjyo, “Compatible embedding for 2d
shape animation,” IEEE Transactions On Visualization and Computer

Graphics, 15(5), pp. 867–879, 2009.

[17] H. Fang and J. Hart, “Detail preserving shape deformation in image
editing,” ACM Transactions on Graphics (TOG), vol. 26, no. 3, pp.

12–es, 2007.

[18] Y. Li, J. Sun, C.-K. Tang, and H.-Y. Shum, “Lazy snapping,” ACM
Transacitons on Graphics, vol. 23, no. 3, pp. 303–308, 2004.

[19] M. Eck, T. DeRose, T. Duchamp, H. Hoppe, M. Lounsbery, and W.
Stuetzle, “Multiresolution anaylsis of arbitrary meshes,” in Proc of

ACM SIGGRAPH, 1995, pp. 173–182.

[20] M. Eitz, O. Sorkine, and M. alexa, “Sketch based image deformation,”
in Proc of Proceedings of Vision, Modeling and Visualization, 2007,

pp.135–142.

The International Journal of Virtual Reality, 2012, 11(1):25-32 32

Yaqiong Liu is currently a PhD candidate in School

of Comoputer Engeering at Nanyang Technological
University. She received her B.S. in Computer

Science & Technology and Financial Management

from Tianjin University in China. Her research
interests are computer graphics, image animation,

information retrieval and data mining.

Hock Soon Seah is a full professor of School of

Computer Engineering at Nanyang Technological

University. He is director of GameLab in School of
Computer Engineering. His research areas include

computer vision research in tracking, extraction of

camera trajectory, and 3D reconstruction from image
sequences for augmented reality and automating

2D/3D computer graphics for the film/video industry.
For more information, please go to page

http://www.ntu.edu.sg/home/ashsseah/.

Ying He is currently an assistant professor of School

of Computer Engineering at Nanyang Technological

University since 2006. He received his Ph.D. and M.S.
in Computer Science from Stony Brook University,

USA. He received his M.S. and B.S. in Electrical
Engineering from Tsinghua University, China. His

research interests fall into visual computing. He is

particularly interested in the problems which require
geometric analysis and computation. He leads the

Geometric Modeling and Processing group.

Juncong Lin is currently a faculty at Xiamen

University, China. He was a research fellow in the
geometric modeling group in the School of Computer

Engineering at Nanyang Technological University

from Oct 2009 to Sep 2011. He received his B.S
degree in Environmental Engineering and Ph.D.

degree in Computer Science from Zhejiang

University. His primary research interests are
computer graphics and user interface.

Jiazhi Xia is currently a faculty at Central South

Univeristy, China. He received his Ph.D. in Computer

Engineering from Nanyang Technological University
in Jun. 2011. He received his M.S. and B.S. in

Computer Science from Zhejiang University, China.

http://www.ntu.edu.sg/home/ashsseah/
http://www.stonybrook.edu/
http://www.tsinghua.edu.cn/
http://www.zju.edu.cn/
http://www.zju.edu.cn/
http://www.zju.edu.cn/

