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Abstract—The establishment of a good correspondence 

mapping is a key issue in planar animations such as image 

morphing and deformation. In this paper, we present a novel 

mapping framework for animation of complex shapes. We firstly 

let the user extract the outlines of the interested object and target 

interested area from the input images and specify some optional 

feature lines, and then we generate a sparse delaunay 

triangulation mesh taking the outlines and the feature lines of the 

source shape as constraints. Then we copy the topology from the 

source shape to the target shape to construct a valid triangulation 

in the target shape. After that, each triangle of this triangular 

mesh is further segmented into a dense mesh patch. Each mesh 

patch is parameterized onto a unit circle domain. With such 

parametrization, we can easily construct a correspondence 

mapping between the source patches and the corresponding target 

patches. Our framework can work well for various applications 

such as shape deformation and morphing. Pleasing results 

generated by our framework show that the framework works 

well. 

 
Index Terms—image morphing, image deformation, image 

editing, sketched based editing, 2d shape animation, 

correspondence mapping.  

 

I. INTRODUCTION 

Planar shape deformation and animation are ubiquitous in a lot 

of applications. Examples of ongoing use include digital 

compositing in CG productions, cel animation and web 

graphics, etc. Despite the voluminous literature on the subject, 

there remain many ways in which current 2D techniques can be 

improved upon. 

As the basic operation in many 2D applications, image 

deformation has been an active research area in computer 

graphics for a long time. Researches in this area could be 

roughly classified into two categories. The first one is to deform 

the space in which the target shape is embedded. The work of [1] 

used a skeleton to define the deform space. Each point in the 

shape is associated with a coordinate frame defined by a bone. 

[2] proposed a moving least squares based image deformation 

technique. Various linear functions including affine, similarity 

and rigid transformations were used to create realistic 

deformation while providing closed-form expressions for each  
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of them. Their work was further enhanced in [3] with a 

sketch-based interface, fold-over reduction and performance 

acceleration. [4] generalized barycentric coordinates from real 

numbers to complex numbers and applied the technique for 

planar shape deformation. Their method produced results 

superior to state-of-the-art methods at a small extra cost in 

computational complexity, in pre-processing time only. In [5], 

the authors described a novel 2D shape deformation system 

which generated conformal maps, yet provides the users with a 

large degree of control over the result. The second kind of 

deformation technique deforms the shape taking its structure 

into account. These methods usually adopts some physically 

based models, mostly mass-spring models, to guide the 

deformation. Instead of using physically based models, [6] 

achieved an as-rigid-as-possible deformation effect by 

geometrically minimizing the distortion associated with each 

triangle in a mesh. Their technique shared certain similarity 

with the technique used in [7]. 

Morphing technique can produce compelling transitions 

between objects through continuous evolution from the source 

into the target. It is commonly applied in scientific visualization, 

film animation and advertising industries. There are two 

well-understood major issues in morphing. The first is how to 

conveniently establish a reasonable correspondence mapping 

between the source and the target, known as the 

correspondence problem. A popular solution to this problem is 

to let a user firstly prescribe some feature points [8], line 

segments [9] on both the source and target images. Then the 

correspondence for every pixel in the image could be further 

established through mesh-based techniques, radial basis 

functions [8], and contouring. The second is how to define the 

way of transforming the source shape transformed into the 

target shape, known as the path problem. Usually, in particular 

in the context of image morphing, the path problem is solved 

using linear interpolation, though more advanced interpolation 

schemes can be utilized as well. The path problem for 

two-dimensional polygons was discussed in [10], where 

interpolation was performed on edge lengths and angles. In [11], 

the interior of the polygon as well as its boundary were taken 

into account. In [12] , a different representation of polygons, 

with a multi-resolution character was proposed. 

A key issue in both image deformation and morphing is to 

construct a mapping either between the shapes before and after 

editing (deformation) or between the source and target shapes 

(morphing). Earlier methods usually defined a certain warping 

function for such mapping. As shape based editing (where the 
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domain is a complex shape other than a simple regular domain) becomes popular recently [7], [6], some more recent work tends  

 
 

to establish a mapping to construct a compatible triangulation. 

In [13,7], they generated a compatible triangulation by 

mapping the bounding polygons onto a common domain. 

These methods are conceptually simple but not optimal in 

terms of the runtime (O(n
3
)) or in number of Steiner vertices 

introduced (O(n
2
)). In [14,15,16], they used a 

divide-and-conquer strategy to recursively partition the 

polygon into triangles. These methods are better in time 

complexity (O(n
2
 logn)) and often without Steiner vertices. 

However, they are algorithmically quite complex. 

In this paper, we present a novel system for shape aware 

image deformation and morphing (Fig. 1). The key component 

of our system is a novel framework that constructs a 

correspondence mapping between the shape before and after 

editing (for deformation), or between the source and the target 

shapes (for morphing). Given the input image, we firstly 

extract the outlines of the interested object and specify some 

feature lines which can help convey the shape. We then 

construct a triangular mesh through delaunay triangulation 

taking the outlines and the feature curves as constraints. The 

triangular mesh is further segmented into patches. After that, 

each mesh patch is parameterized onto a unit circle domain. 

With the parametrization, we can easily construct a 

correspondence mapping between the patches of the source 

shape and the patches of the target shape for various 

applications such as shape deformation and morphing. [17] 

proposed a detail preserving shape deformation method in 

image editing. Their image editing system decoupled feature 

position from pixel color generation by resynthesizing texture 

from the source image to preserve its detail and orientation 

around a new feature curve location. They constructed a dense 

correspondence between the source and target images 

generated by the control curves and then used this 

correspondence to synthesize texture. Our framework can be 

applied for image deformation and image morphing and other 

applications. Both of [17] and our method can preserve the 

details of the image after image editing. However, our 

framework supplies more types of feature constraints for users, 

for example, points constraint (Fig. 3(b)). 

 

II.  OVERVIEW 

In this section, we describe the whole framework of our 

method as shown in Fig. 2. Given the input image I containing 

an object O⊂ I, the user firstly extracts the object's outline (Fig. 

2(a)) which is defined as a set of non-intersecting simple 

closed curves. The outline could be easily extracted with 

available tools such as lazy snapping [18]. The user can also 

specify some major features of the shape using strokes. Then 

the system generates a delaunay triangular mesh taking the 

outlines and the feature lines as constraints (Fig. 2(c)). Each 

subregion of this triangular mesh is further divided into mesh 

patches. As we form a one-to-one mapping of the feature 

constraints of the source shape and the feature constraints of 

the target shape, there is a one-to-one mapping between each 

patch of the source triangular mesh and the corresponding 

patch of the target triangular mesh. We map each mesh patch 

onto a common circular domain. Equipped with this 

parametrization, we can conveniently construct a 

correspondence mapping for 2D shape animations. For shape 

morphing, we firstly generate the intermediate contours using 

linear blending or more complex existing methods [10]. We 

then generate the intermediate triangular mesh from the source 

and the target meshes with the corresponding mapping 

constructed by the third step mentioned above. This triangular 

mesh has similar patch layout as source and target (Fig. 2(d)). 

Afterwards we fill in the pixels of the intermediate shape. 

Similarly, each patch of the intermediate shape is also 

parameterized onto a unit circle. We can finally construct a 

mapping among the source shape, the intermediate shape, and 

the target shape, and each pixel of the intermediate shape will 

be filled by linear interpolation of the color values of the 

corresponding pixels in the source and the target shapes. For 

image deformation, we determine the affected area according 

to a user's operation. Thus, we can get the shape contours of 

the affected area before and after users' editing. We then 

update the triangular mesh part of the affected area and 

parameterize it onto the unit circle. Hence, we can construct 

the mapping between the shape before and after editing. The 

pixels will be transferred to the edited part (Fig. 2(e)). 

 

III. CORRESPONDENCE ESTABLISHMENT 

3.1  Guaranteed Feature Correspondence 

Our system allows users to specify feature constraints at the 
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beginning. These feature constraints include boundaries, 

points, strokes, and circles (Fig. 3). A boundary is absolutely 

necessary, for we can identify the interested area through this 

boundary. For image morphing and editing, after specifying 

feature constraints of the source shape, users 

 
 

Fig. 2. Flowchart of our 2d shape animation system: (a) source object; (b) feature lines; (c) triangular mesh and patch layout; 

(d) morphing results sequence: original object, intermediate object, target object; (e) Editing steps: sketched target shape and 
feature lines, and we obtain the new image. 

 

specify the feature constraints of the target shape in the same 

order as the source. Therefore, we can get a one-to-one 

mapping between the feature lines in the source and target 

shape. After users' operation, our system samples points along 

each feature constraint with the same quantity automatically. 

Thus we obtain a one-to-one mapping between a feature point 

in the source shape and the corresponding feature point in the 

target shape. 

 
 

Fig. 3. Different types of feature constraints: (a) boundary; (b) points; (c) 
strokes; (d) circle. 

3.2  Patch Correspondence 

Next, our system applies a delaunay triangulation only to 

the source shape with these sampled points along feature lines. 

Thus we get a connectivity relationship among these points in 

the source shape. Then our system automatically connects the 

corresponding points in the target shape according to the same 

connectivity. However, only by copying the connectivity 

topology from the source to the target, we sometimes cannot 

avoid self-intersection in the triangulation of the target shape. 

To solve such a problem, our system also allows users to move 

the position of those sampled points in order to obtain a valid 

delaunay triangulation of the target shape (Fig. 5(b))(If there 

are holes in this mesh, each of these polygonal holes is also a 

rough patch). Therefore, each triangle (or hole) t of the 

delaunay triangulations can be regarded as a rough patch. As 

the source and target triangular mesh have the same 

connectivity topology, they have equal numbers of rough 

patches and each rough patch in the source shape has one and 

only one corresponding rough patch in the target shape. Hence, 

a rough patch-to-patch correspondence has been constructed. 

However, each rough patch t is still a relatively large 

triangle or a polygon. Thus, in addition to the delaunay 

triangulation which is sparse, we also apply a dense 

triangulation to each rough patch t of both source and target 

shape (Fig. 2(c), Fig. 5(c)). This does not change the rough 

patch-to-patch correspondence. Thus patch correspondence 

has been constructed (Fig. 4). 

 

IV. KEY STEPS ANALYSISR 

4.1  Triangulations 

Our system applies three kinds of triangulations in total. The 

first triangulation is a Delaunay triangulation applied to the 

source shape. After copying the connection topology from the 

source shape to the target shape, we get a rough patch-to-patch 

correspondence, each large triangle or polygonal hole is a 

rough patch.we apply a detailed triangulation to each triangle 

of the Delaunay meshes. We then apply a dense triangulation 

to each of these rough patches respectively. This is called the 

second kind of triangulations. 

Thus, it appears that we have obtained valid patches based 

on dense triangulations and obtained a whole dense triangular 

mesh. However, as we apply a dense triangulation Tri1 to each 

rough patch separately, there may be different numbers of 

points on the common edges of two adjacent patches. To solve 

this problem, we apply a ReTriangulation Tri2 to each patch. 

The re-triangulation procedure is detailed in Algorithm 1. 
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4.2  Constraint Map 

Let Ps ∈ Os and Pt ∈ Mt be the pair of segmented patches, 

each of which is a genus-0 surface with only one boundary. 

We want to find a bijective and smooth map Ø : Ps→Pt . 

Rather than computing the map directly, we first parameterize 

Ps to the unit disc using harmonic map, i.e., f : Ps → D such 

that △ f = 0 and f maps the boundary of Ps to the boundary of 

D using arc length parametrization, f (∂Mi) = ∂D. Similarly, 

we also parameterize Pt to the unit disc using harmonic map g : 

Pt → D. More details of discrete harmonic map could be 

Found at [19]. 

 
 

Fig. 4. How patch correspondence is established. 

 

Then we seek a smooth map between two unit discs h : D 

→ D. This map h is also computed using harmonic map △ h 

= 0 and the boundary condition is set as follows: Let s1, s2 

and s3 be the sample points on ∂Mi, and f (s j) ∈ ∂D, j = 0, 1, 

2 be the images on the boundary of unit disc. Similarly, let 

g(s′j) ∈ ∂D be the images of the sample points s′j∈ Pi. Then 

we require the function h maps f (s j) to g(s′j), i.e., h◦ f (s j) = 

g(s′j), j = 0, 1, 2. The images for the points between f (s j) and 

f (s( j+1)%3), j = 0, 1, 2, are computed using arc length 

parametrization. 

Finally, the correspondence mapping between the two 

patches is given by the composite map Ø = f ◦ h ◦ g
−1

 as 

shown in the following commutative diagram: 

 

 
 

Fig. 6. Demonstrates the results of the constraint map. 

User can take full control of the correspondence using 

simple sketches as the boundary condition. 

4.3 Pixel Operation 

After the correspondence mapping between two patches 

has been constructed, we join all the patches together to form 

one single triangular mesh for both the source and target 

shapes, and thus we can get the source mesh S and the target 

mesh T. At the same time, the correspondence mapping 

between the source mesh S and the target mesh T can be also 

obtained. 

1)     Shape Morphing: For shape morphing, to calculate 

the intermediate shapes between the source shape and the 

target shape, we need two steps. In the first step, we calculate 

the outlines of the intermediate shapes. In the second step, 

we calculate each pixel of the intermediate shape. To 

determine each point in each intermediate shape, we use the 

following steps. 

Step 1: determine the triangle mesh M of the intermediate 

shape according to the correspondence mapping between the 

source mesh and the target mesh. 

Step 2: for each point p in the intermediate shape, 

determine the specific triangle t in which it locates in the 

intermediate mesh.  

Step 3: calculate the barycentric coordinates of p about 
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triangle t. 

Step 4:  find a pair of corresponding points of p separately 

in  the corresponding triangle t1 in the source mesh S and the 

corresponding triangle t2 in the target mesh T. Let p1, p2 

denote these two points respectively. 

Step 5: use linear interpolation of the pixel values of p1 

and p2 to determine the pixel value of p. 

These are ordinary steps. Our system gets pleasing results 

such as human faces, flowers, leaves, fruits, cartoon 

characters and some other shapes, as shown in Fig. 10. 

2)     Shape Editing: For shape editing, there is no need to 

calculate the intermediate shape. We can just transfer the 

pixel values in the source shape to the corresponding pixels 

in the target shape according to the correspondence mapping 

between the source mesh S and the target mesh T. Our 

system also gets pleasing results as shown in Fig. 11.  

 

V. APPLICATIONS 

We now show how to use the correspondence mapping to 

realize various 2D shape animation effects taking shape 

morphing and shape deformation as examples. 

5.1 Shape Morphing 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

There are two steps in the shape morphing. We firstly 

generate the outlines and the feature curves of the 

intermediate shape. This can be easily done with linear 

interpolation or existing more complex methods like [10]. In 

the second step, we then fill in the pixels of the shape. For 

 

 
 

Fig. 5. Realization of morphing with our correspondence mapping 
method. (a) Morphing shapes; (b) Triangular meshes. Delaunay 

triangulation applies to both source and target images. Each of the 

triangles is a triangular patch. (c)The corresponding patches and 
corresponding pixels; (d) The parametric domains of patches and the 

image points of the corresponding pixels; (e) determine the pixel 

correspondence in the parametric domain. 

 

 
 
Fig. 6. Constraint mapping of the two patches. (a) source patch layout 

and take the yellow patch for example; (b) target patch layout and target 

corresponding example patch; (c) details of this yellow patch; (d) target 
corresponding patch; (e) parameterize this patch to circular domain; (f) 

a circular mesh parameterized from the target corresponding patch. 
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each pixel of the intermediate shape, we firstly find the 

triangle it locates in, and compute its barycentric coordinate. 

We can then find its image in the parametrization domain 

with the same triangle and same barycentric coordinate. 

After that, we can find the corresponding pixels in the source 

and target that have the same image in the parametrization 

domain. We first determine the source (or target) triangle the 

image point located in and calculate the barycentric 

coordinate in the triangle. We can similarly find the pixel in 

the source (target) shape in a reverse way with the same 

triangle and same barycentric coordinate. Finally, given the 

colors of the pixels ps, pt, denoted as c(ps) and c(pt) 

respectively, the final color of pixel p, c(p), is set to be: 

 

c(p) = w · c(pt)+(1−w) · c(ps) 

 

5.2   Image Editing 

 
 

Fig. 7. Implementation of image deformation with our method. As shown in 

(a), a user sketches the original feature and the target feature on one single 
image. (b) Our system treats these feature lines the same as the morphing 

process. (c) shows the delaunay triangulation of the source and target object. 

(d) shows the deformation result. 

 

Our system also provides a similar sketching interface for 

image editing [20]. Users simply draw a new boundary shape 

as the interested editing area. They could also draw interior 

feature lines as other feature constraints. The system then 

constructs a triangular mesh of both the original shape and 

the new shape and parameterize each patch of these two 

triangular meshes onto a unit circle. Hence, the system 

obtains a correspondence mapping between the source shape 

and the target shape. Finally, the interior of the new shape 

will be filled by the pixels from the original shape through 

the correspondence mapping. Details of image editing are 

shown in Fig. 7. 

 

 
 

Fig. 8. Our method works well on bunny ears. 

VI.      RESULTS ESTIMATION 

We have implemented a prototype system of the described 

method in C++ running on a workstation with an Intel Xeon 

2.67-GHz CPU and 8 GB RAM. Our method is conceptually 

simple and easy to implement. It is also quite efficient. 

Sparse linear systems and 2D triangulation are involved. The 

time statistics of the main steps are listed in Table I. 

Although simple, our method is quite effective and provides 

pleasing results as shown in Fig. 1. More morphing 

examples could be found in Fig. 10, and deformation 

examples could be found in Fig. 11. 

Compared to [17], our method can also work well on some 

figures such as long bunny ears(Fig. 8) with user specified 

feature constraints. The difference between our method and 

the method of [17] is that our framework can work well on 

most of the figures with smooth texture, while [17] applies 

image synthesis to smooth neighboring patches of figures 

with uneven texture. 

 
TABLE 1. TIME STATISTICS OF THE MAIN STEPS IN OUR 

FRAMEWORK. 

 
 

 

 
 

Fig. 9. Example triangulations with different resolutions. The 

numbers of vertices are 208, 381, 486 respectively. 

 

VII.     CONCLUSION 

In this paper, we present a simple yet efficient method that 

uses guaranteed feature correspondence to realize sketch 

based image morphing and image editing. For each of the 

two shapes that need a correspondence mapping between 

them, we generate a triangular mesh taking the outlines and 

the feature lines of the shape as constraints. The triangular 

mesh is further divided into patches. We then parameterize 

each patch onto a unit circular domain. With the 

parametrization, we can build the corresponding mapping of 

each pair of corresponding patches, and then build the 

corresponding mapping of the whole shapes. The efficiency 

and effi cacy of this method are shown through various 

morphing and deformation examples. 

The main contribution of this paper is that we proposed a 

method that constructs a guaranteed patch correspondence to 

edit images from user-controllable feature constraints in an 

intuitive manner. Thus in computer animation area, there has 

been a new method that can be used to realize image editing 

and deformation. Users are able to control the number of the 

feature curves and feature types. Many results indicate that 

users do not need to sketch as many feature curves as 
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possible. Approximate feature constraints are enough. 

Fig. 10. Morphing results generated with our method (Color Plate 7) 

 

 
 

Fig. 11. Deformation examples designed with our framework (Color Plate 

8) 

 

However, as mentioned in Section 3.2, copying topology 

from source to target may cause self-intersection. In practice, 

this is mainly depended on the feature constraints. Different 

number of sampled points along the feature lines lead to 

different triangulations, while in most of the cases, the target 

triangulation is valid. Thus our system allows users to move 

the position of the feature points easily and freely if required, 

to guarantee a valid triangulation. However, this operation 

may take up users’ time. Normally, users can only spend less 

than one minute to move the position of the feature points 

because in such occasions, there are only several triangles 

that intersects each other. 

In the future, we will continue focusing on this topic to 

work out a solution that could avoid self intersection and 

enable the automatic detection of the feature lines. 

Meanwhile, we will try to extend the method to 3D 

animation/morphing, in particular, for the shapes of different 

topology. 
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