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Abstract—This paper introduces a flexible and powerful
software framework based on an off the shelf game engine which is
used to develop distributed and collaborative virtual and
augmented reality applications. We describe ARTIFICe’s flexible
design and implementation and demonstrate its use in research
and teaching where 97 students in two lab courses developed AR
applications with it. Applications are presented on mobile, desktop
and immersive systems using low cost 6-DOF input devices
(Microsoft Kinect, Razer Hydra, SpaceNavigator), that we
integrated into our framework.

Index Terms—3D Interaction Techniques, Mobile Augmented
Reality, Low-Cost Tracking Devices, Virtual Reality Framework

L INTRODUCTION

Developing Virtual and Augmented Reality (VR/AR)
applications requires a lightweight and flexible but still
powerful VR/AR framework, which is extendable to easily
integrate new devices and technologies. A wide variety of

VR/AR hardware and software setups have been built in the past.

However, all share a common general system architecture.
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Fig. 1. VR/AR System Architecture

The key elements of an VR/AR system are shown in Fig. 1
and comprise input and output devices whose spatial position
and orientation might be tracked, a computing platform with a
powerful graphics processor and a VR/AR software framework
handling input, output and application behaviour. The most
important part is the user (or multiple, collaborating users)
working on a certain task and interacting with the system.

Diverse technologies for tracking are in use to determine the
location of input and output devices as well as specific body
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parts of the user up to full body motion capture. Tracking data of
these devices is received by the computing platform (e.g.
workstation, mobile device) and handed over to the VR/AR
framework’s tracking middleware. The middleware processes
and transforms input data to provide it for subsequent usage
within the application. Based on this input data 3D interaction
techniques can be supplied to the user. Recent low-cost video
game controllers as well as powerful mobile hardware offer
great opportunities for novel interaction supporting multiple
users for collaborative virtual reality applications.

If multiple users work together, communication is controlled
by a network layer while 3D interaction is handled by an event
handling mechanism. Subsequently, the virtual scene is
visualized to the user on its output device using the rendering
engine. Ideally, a VR/AR framework should offer high quality
real-time rendering, physics support, networking and scene
management to build rich 3D applications. Additionally, for
research and teaching purposes, a virtual reality framework
must be inexpensive, quick to familiarize with, well
documented and flexible for feature extension and rapid
integration of novel hardware solutions.

Existing toolkits and approaches, described in section II,
have various drawbacks regarding costs, usability, flexibility
and extensibility. Thus, we decided to develop a framework
based on an off the shelf game engine for collaborative and
distributed VR/AR applications supporting multiple users and
various input devices for interaction.

Overall our framework provides the following features: (1) a
graphical user interface and scene management for rapid
prototyping of a VR/AR application, (2) an adaptable
interaction and distribution framework for -collaborative
applications for mobile as well as workstation-based VR/AR
setups, and (3) it supports versatile VR/AR setups (mobile,
semi-immersive, immersive) on different operating systems and
platforms, integrates various input devices such as 2D markers,
3D mice, video game controllers, depth cameras, 6 DOF targets,
and supports a range of output devices e.g. smartphones, tablets,
stereo projectors, head mounted displays (HMD).

In this paper we present three main contributions: (1)
development of an innovative interaction framework for mobile
as well as workstation-based VR/AR setups, (2) design and
implementation of a complete, flexible middleware/tracking
framework for straight forward integration of new interaction
devices, and (3) integration of new, low-cost controllers like
Microsoft Kinect, Razer Hydra, Sony Move and
SpaceNavigator.
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IL RELATED WORK

Since the mid-1990s, a large number of VR/AR frameworks
have been developed and a variety of systems supporting
distributed VR applications emerged [S]. Most software
frameworks are based on scene graph libraries, e.g., open source
toolkits such as Studierstube [16], VR Juggler [3], Avango [7]
or commercial ones like 3DVIA Virtools [22]. They provide
varying support of multiple input and output devices. In the
following, we briefly discuss frameworks related to our work.

Studierstube is an application framework for collaborative
Augmented Reality. Its development started in 1996 and
continued for almost ten years while it was used for research and
teaching. It simultaneously supports multiple users as well as
multiple applications, which are embedded as nodes in a scene
graph. While this open source C++ based framework is very
powerful, it is hard to maintain, does not provide a graphical
user interface for scene management and is difficult to learn
within a short period of time, which is important if used for
teaching. Additionally, recent technologies such as mobile
phones or depth imaging sensors can hardly be integrated.

3DVIA Virtools is a commercial development and
deployment platform for interactive 3D content creation. It
supports multiple users and physics behaviour to create
immersive and distributed applications using industry standard
VR peripherals. It offers a comprehensive graphical
development environment and can deploy to a wide range of
output devices. However, its application for research and
teaching is limited due to high licensing costs.

One of the first AR frameworks using off the shelf software to
design and develop AR applications was DART [8]. DART is
based on the Macromedia Director multimedia programming
environment. It uses the familiar Director paradigms of a score,
sprites and behaviours to allow a user to visually create complex
AR applications. DART also provides low-level support for the
management of trackers, sensors, and cameras via a Director
plug-in Xtra. However, DART is not suitable for research and
teaching due to licencing costs for Director. In addition, it lacks
stereo output support and the timeline based scene management
is rather made for story telling environments than VR/AR
applications.

Similar to Virtools, Unity3D [17] features an editor for
authoring 2D and 3D content and compromises a game engine
for executing the application. Nevertheless, Unity3D by itself is
no VR/AR framework but is designed for creating 3D video
games and other interactive content. It offers a powerful render
engine providing lighting, physics, network communication for
collaboration and content distribution. Furthermore, it provides
an integrated programming environment using C#, JavaScript
or Boo while development can be done under Windows as well
as Mac OS X. The final application can be built — generally
without changes — for various platforms such as Windows, Mac,
i0S, Android, all major game consoles, Flash and web clients.
Unity3D is available for free and applications can be deployed
at no charge to Windows and Mac.

Our framework uses Unity3D as its underlying development
platform and rendering engine. All VR/AR specific extensions
were built around Unity3D.

III. FRAMEWORK OVERVIEW & DATA FLOW

Concerning our motivation stated in section I we aimed on
developing a loosely coupled modular software framework
which can easily be adapted to support novel devices and
interaction techniques. In Fig. 2, an overview of the framework
with its components and the data flow is illustrated.

Tracking data from various workstation-based input devices
as well as mobile devices are fed into the framework using a
transparent and adaptive middleware layer. The middleware
transforms all input data in a consistent way and delivers it to the
application layer. The application layer is built on top of an
external game engine. Within the application layer, the
ARTIiFICe core handles the tracking input data, provides
interaction technique and distribution support and delivers the
data to the game engine’s scene management. The virtual scene
with real-time interaction is then visualized on different output
devices using the game engine’s rendering module.
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Fig. 2. Framework components and data flow

To provide various 2D as well as 3D interaction techniques
the ARTiFICe core comprises a flexible interaction framework,
which offers multiple pre-defined interaction techniques and is
easy to extend with novel interaction metaphors. The interaction
framework offers a single interface to process tracking data
from a workstation based device or from a mobile phone to
control the virtual interaction device for selecting and
manipulating virtual content.

Besides interaction with 3D content, the co-presence of
multiple users interacting with the same content at the same
point in time opens up great possibilities for collaborative work.
Hence, we integrated a distribution framework into the
ARTIFICe core to enable real time user-managed collaboration
for various hardware setups for two or more users over the
network. Further details about the ARTiFICe core are given in
the next section.

IV. IMPLEMENTATION

We decided to use Unity3D as the base infrastructure for the
application layer of our proposed VR/AR framework. It offers a
powerful rendering engine, the possibility to extend its
functionality with own features and a strong developer
community. Furthermore, the free to use license which includes
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all features we need for authoring, rendering and physics
support. All implementations are done using C++ and C#.

4.1 Middleware Layer

To gather all tracking input by various devices in one single
software layer we use OpenTracker (OT) [15]. It is open source
tracking middleware, which offers transparent and flexible
device integration, pre-processes input events and passes them
to the application layer. It provides a framework for the
different tasks involved in tracking input devices in VR/AR
applications and eases the development and maintenance of
hardware setups in a flexible manner. This is achieved by using
an object-oriented design based on XML and utilizing standard
XML tools for development, configuration and documentation.
A multi-threaded execution model takes care of tunable
performance, filters and transformations can be applied to
tracking data. XML based configuration files are used to
describe tracking configurations that usually consist of multiple
input devices. To fetch tracking data from remote input devices,
Virtual-Reality Private Network (VRPN) [18] can be used. It is
a device-independent and network-transparent framework for
devices used in VR/AR systems.

Hence, to provide a transparent interface and for loose
coupling between the set of physical devices and the application
layer we integrated OT as middleware in ARTiFICe to hand
over the tracking data from input devices. Therefore, we
developed a new OT node called “Unity” to provide a single
sink for all tracking devices. The Unity-node is referenced
during run-time by the ARTiFICe core for fetching tracking
data to provide them within the application. To access tracking
data over the network in OT we use VRPN interfaces.

4.2 Tracking Devices & Integration

We integrated support for several tracking systems in our
framework to enable desktop-based, semi-immersive, full
immersive as well as mobile VR/AR setups.

For desktop setups ARToolKit [6] as well as ARToolkit+ [21]
are easy to use tracking libraries providing a square planar
shape for pose estimation and an embedded 2D pattern for
distinguishing markers. They calculate camera position and
orientation relative to physical markers in real time and thereby
enable the development of a wide range of Augmented Reality
applications. ARToolkit is usually applied for desktop based
AR environments while ARToolkit+ enhances the original
ARToolkit library and is optimized for usage on mobile devices.
We use ARToolkit+ within our framework, which has been
previously integrated into OT. OpenVideo [10], a data
integration- and processing framework, is applied to acquire
video frames from the webcam, which are processed by
ARToolkit+ and later streamed into Unity3D to provide a view
of the real world scene.

We integrated a 3D mouse and Razer Hydra into the OT
Unity-node to enable 6DOF desktop interaction. For semi- as
well as fully immersive mixed reality applications iotracker [13]
as a passive marker based infrared optical tracking system is
suitable. It tracks arbitrary physical objects furnished with
passive markers with an update rate of 60 Hz and very low
latency (20-40ms), minimal jitter (RMS less than 0.05mm),
submillimeter location resolution and an absolute accuracy of

+0.5cm. For integration we interfaced OT with iotracker using
VRPN and the OT Unity-node.

Besides marker-based optical tracking we also wanted to
allow markerless full-body motion tracking. Therefore, we
integrated Microsoft Kinect using the OpenNI/NITE [9][12]
framework and FAAST [17]. OpenNI/NITE provides an API to
access raw depth data as well skeleton data, which are
calculated based on the depth data. FAAST runs as
self-contained application and reads this data. It provides
gesture recognition support and full body tracking data via
VRPN to OT. Using the OT Unity-node we feed real-time
skeleton tracking and gestures into the ARTiFICe core.

The development of AR applications for current handheld
devices must also be supported by a modern VR/AR framework.
Vuforia [20] is a tracking framework that enables creation of
mobile AR applications by using the display of the mobile
device as a "magic lens" into an augmented world. It detects a
variety of real 2D and 3D objects by robust natural feature
tracking and hands over tracking- and pose-information to the
AR application to visualize artificial content within the live
camera image in the smartphone display. It runs on iOS and
Android. In our framework Vuforia acts as mobile middleware
and mobile data processing component and is interfaced to the
ARTiFICe core.

Our flexible middleware concept allows configuration of all
devices and any combination of them using a single OT XML
configuration file. Configuration of mobile devices is treated
separately using Vuforia.

4.3 Application Layer

In Fig. 3, a detailed view on our framework with its data flow
and core components is given. The ARTiFICe core comprises a
Manager and a tracking-, interaction- as well as distribution
framework.
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Fig. 3. Detailed framework components

The ARTiFICe Manager controls the data flow between
middleware and application layer. At application start-up it
reads the OpenVideo and OpenTracker configuration files and
loads the dependent tracking libraries. It starts an OpenTracker
instance and an OpenVideo handler for ARToolkit+ marker
tracking. It also closes OpenVideo and stops OpenTracker at
application shutdown. A detailed explanation of the tracking-,
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interaction- and distribution framework is given in the next
subsections.

All virtual objects in the scene are managed by Unity3D’s
scene authoring. Therefore, Unity3D provides a C# container
class called GameObject to which geometry, transformation
nodes, textures, physical properties as well as own C# classes
can be attached to control visual appearance and overall
behaviour of a virtual scene object. These GameObjects can be
grouped in a logical manner forming a transformation hierarchy,
which corresponds to the matrix stack concept in OpenGL. For
in depth explanations please refer to the Unity3D
documentation [19].

1) Tracking Framework:

To feed tracking data of an input device into the
transformation node of a GameObject for mapping the real
physical position and orientation to a virtual object we
developed the ARTiFICe tracking framework. It inherits from
the Unity3D base class MonoBehaviour to be able to attach the
deriving classes to any virtual scene object. The overall design
of the tracking framework is shown in Fig. 4.

The tracking framework differs between mobile and
workstation-based tracking input. In the mobile setup
TrackMobile accesses the current device pose by using
Vuforia. TrackerBehaviour. For the various workstation setups a
subclass for each supported device was implemented.
Depending on the input device the corresponding subclass is
attached to the virtual scene object. As soon as the application
starts TrackProvider creates ARTiFICe Trackers through the
ARTiFICe Manager, which is implemented as singleton. Each
ARTiFICe Tracker is interfaced to the corresponding OT
Unity-node and thereby provides the input data of all used
devices to the tracking framework. In addition, for 2D marker
tracking we developed our own multi-marker tracking support
to be able to track cuboid-formed 3D objects and determine its
absolute physical pose.
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Fig. 4. Tracking class hierarchy

All concrete tracking subclasses provide a consistent tracking
data layer, which can be used as tracker object for further
processing within the interaction framework.

2) Interaction Framework
Raw tracking data which is fed into the transformation node of
a virtual scene Unity3D.GameObject should be controllable to

provide interaction techniques (IT) for 3D objects selection and
manipulation. Therefore, we developed an interaction
framework, which is illustrated in Fig. 5.
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Fig. 5. Interaction class hierarchy

A tracker object is used to access raw tracking data. This data
is then processed by the specific IT and handed to the
interaction framework. The abstraction layer
ObjectSelectionBase provides a straight forward and clean
interface of data handling for workstation as well as mobile
setups and offers a transparent layer to integrate new techniques
into the framework. The only information which must be handed
over to ObjectSelectionBase is a list of the selected object(s)
and the absolute pose of the interaction object, calculated by the
IT. This data is then processed by the InteractionBase class and
delivered to all selected virtual scene objects. Virtual scene
objects which should be selectable must have the
ObjectController class attached. Depending on the given pose
the ObjectController manipulates the position and orientation
of the selected scene object.

As concrete 3D interaction techniques, we implemented
several standard VR interaction metaphors such as a simple
VirtualHand, GoGo [14], Aperture [4] and HOMER [2]. For
interacting in a three-dimensional manner on the mobile phone,
we adapted the HOMER interaction technique by using the
physical pose of the device for object manipulation.

3) Collaboration & Distribution Framework

To provide multi-user support for interaction with different
interaction devices and collaboration on one scene over large
distances, we implemented a collaboration and distribution
framework. It is loosely coupled with the interaction framework
and enables distribution for mobile as well as for all workstation
setups. The network functions are based on the Unity3D
network layer using UDP for communication. We are using a
client-server architecture with a direct connection between the
server and all clients (star topology). For data exchange remote
procedure calls (RPC) and state synchronization are employed.
To prevent data loss the state synchronization is buffered.

An overview of the distribution framework and its connection
to the interaction framework is given in Fig. 6. The
NetworkBase class provides functions to initialize the server
and to connect a client to the server. All connected clients are
managed by the UserManager class, implemented as singleton.



The International Journal of Virtual Reality, 2012, 11(3):1-7 5

To reduce necessary hardware for realizing a client-server
application and to improve overall usability, one device can act
as server and client simultaneously.

Unity3D GameObject

Unity3D MonoBehaviour

Unity3D InteractionObject

Unity3D MonoBehaviour

{ ObjectController InteractionBase ]
[ MNetworkObjectController [ ObjectSelectionBase ]

ExclusiveAccessObjectController
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Fig. 6. Distribution class hierarchy
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For distributed collaboration each selectable scene object
must attach a NetworkObjectController, which distributes
selection and manipulation functionality over the network. To
enable  exclusive access of a  scene  object
ExclusiveAccessObjectController prevents simultaneous usage
by multiple users. As long as a user manipulates the scene object
it is locked for other users. To provide exclusive object access
to a specific user the UserManagmentObjectController is used.

4.4 VR/AR Application Prototyping

In the following we briefly describe the workflow to build a
new VR/AR application. First, a new Unity3D project is created
and the ARTiFICe framework is added to the project folder. If
using a mobile device, the Vuforia Unity3D extension must be
included into the Unity3D project as well. All workstation based
input devices are configured in the single OT configuration file.
Cameras, lights and scene objects are then added to the virtual
environment using the Unity3D graphical scene management.
They are encapsulated as Unity3D.GameObjects. Virtual
entities which act as tracker-, interaction- or selectable scene
objects are subsequently connected to the according classes of
the ARTIiFICe framework. Finally, the project is built and
deployed to the desired platform and run as single or multi user
VR/AR application.

4.5 Supported Devices

Currently, ARTiFICe supports the wuse of multiple
ARToolkit+ markers, the 3D Connexion SpaceNavigator,
Microsoft Kinect, Razer Hydra, 6DOF devices tracked by
iotracker and mobile phones using Android 2.1 or higher. In
addition, all devices that are supported by OpenTracker and
VRPN can be used in ARTiFICe.

V.RESULTS

Our framework was intensely tested and evaluated using
different setups (section 5.1). Currently, the whole framework
runs on Windows and most parts of it (except Kinect and
ARToolkit+) on Mac OS X, too. In addition, ARTiFICe was
utilized to develop AR applications for the Android platform.

ARTIFICe was used for the master’s degree course “Virtual
Reality Lab Exercise” at Vienna University of Technology
during winter term 2011/12. 80 students built four small VR/AR
applications using ARToolkit+ markers for interaction.
Subsequently, students developed a distributed and
collaborative VR/AR application using various interaction
techniques with 3D Connexion SpaceNavigator and Microsoft
Kinect. Additionally, our framework was employed for the lab
exercise “Augmented Reality” as a part of the master’s degree
program “Mobile Computing” at the University of Applied
Sciences Upper Austria in winter term 2011/12. 17 students
were able to develop a mobile distributed and collaborative
VR/AR application within just four weeks. Besides that our
framework is currently used within a number of on-going
research projects which involve fully immersive setups,
distributed mobile interaction, 6DOF desktop interaction using
Razer Hydra and the Sony Move controller.

By focusing on a well-defined virtual scene management,
loose coupling of input devices and interaction techniques, we
created an environment which allows technically experienced
users to adapt the framework to their needs for application
development. In addition, we provide an easy to use framework
to help students getting over the initial hurdles of creating quick
prototypes of an embodied AR experience.

5.1 Setup Examples

In the following section, we present different hardware setups
and interaction devices in various applications, all based on
ARTiFICe.

1) Mobile Setup

In Fig. 7, a collaborative and distributed mobile application is
shown providing an interactive AR game with physics elements.
Therefore, an arbitrary image is tracked with a mobile phone
and a virtual scene is mapped onto this image within the mobile
display. Multiple users can collaborate, either by pointing their
phone on the same physical image or at different physical
images showing the same motive. The user on the left hand side
currently manipulates a virtual block by HOMER interaction
technique while the user on the right observes this interaction.

N

Fig. 7. Collaborative & distributed mobile AR

2) Desktop Setups

A VR desktop application was realized using Razer Hydra as
a highly accurate 6DOF interaction device. In an application for
geometry education virtual scene objects are controlled using
the Hydra, as illustrated in Fig. 8. A collaborative and
distributed desktop AR application using multiple ARToolkit+
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markers forming a MagicBook [1] is shown in Fig. 9. An
ARToolkit+ cube is used as multiple-purpose interaction
device.

Fig. 8. Hydra Setup Fig. 9. ARToolkit+

3) Desktop and Semi-Immersive Setup

In addition to pure VR/AR desktop setups, we used
ARTIFICe to realize combined desktop and semi-immersive
environments. In Fig. 10 and Fig. 11, a collaborative and
distributed multi-user scenario is shown. Userl controls the
speed and direction of a flying object by gesture recognition and
motion capture using Microsoft Kinect (Fig. 10). User2
interacts with a 3D mouse controlling the height of the flight and
clearing the object’s flight path using GoGo interaction
technique (Fig. 11).

Fig. 11. User2 interacting with a 3D mouse

User2 uses a 2D desktop visualization whereas userl is
interacting in front of the depth imaging device seeing a 3D
visualization provided by a stereo projection with shutter
glasses.

4) Immersive Setup

We used our framework to develop a server-client
application to provide training for prosthesis patients. The
software consists of a server application to control all
parameters and a client application to visualize the virtual
environment in the HMD. In Fig. 12, a demo setup of this fully
immersive application is shown; a 6DOF rigid body target is
used to track the user’s arm for controlling the virtual prosthesis.
Tracking of HMD- and arm target is done using iotracker.

at i .
Fig. 12. Immersive setup with 6DOF passive targets

Stereo projection provides the HMD view to an audience to
share the HMD wuser’s experience for discussion and
explanations.

VI. FUTURE WORK

Currently we are working on a proper Sony Move integration
in ARTiFICe by implementing OpenTracker support and blob
tracking for sensor fusion. More details can be found on the
open source Sony PlayStation Move project site [11].

We will focus on improving mobile support and interaction.
Therefore, we are currently evaluating the concurrent usage of a
semi and fully immersive setup in combination with a mobile
phone. Here, we aim on the flexible management of provided
user interaction depending on the used device. Furthermore,
integration of other mobile AR frameworks besides Vuforia will
be assessed and testing of the framework on 10S is planned.

Moreover, we plan to provide our framework as open source
project to the developers and research community.
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