Interactive Virtual Humans in Real-Time Virtual Environment


In this paper, we will present an overview of existing research in the vast area of IVH systems. We will also present our ongoing work on improving the expressive capabilities of IVHs. Because of the complexity of interaction, a high level of control is required over the face and body motions of the virtual humans. In order to achieve this, current approaches try to generate face and body motions from a high-level description. Although this indeed allows for a precise control over the movement of the virtual human, it is difficult to generate a natural-looking motion from such a high-level description. Another problem that arises when animating IVHs is that motions are not generated all the time. Therefore a flexible animation scheme is required that ensures a natural posture even when no animation is playing. We will present MIRAnim, our animation engine, which uses a combination of motion synthesis from motion capture and a statistical analysis of prerecorded motion clips. As opposed to existing approaches that create new motions with limited flexibility, our model adapts existing motions, by automatically adding dependent joint motions. This renders the animation more natural, but since our model does not impose any conditions on the input motion, it can be linked easily with existing gesture synthesis techniques for IVHs. Because we use a linear representation for joint orientations, blending and interpolation is done very efficiently, resulting in an animation engine especially suitable for real-time applications


Nadia Magnenat-Thalmann

Arjan Egges


No supporting information for this article

Article statistics

Views: 240


PDF: 175