Image Texture Feature Extraction Method Based on Regional Average Binary Gray Level Difference Co-occurrence Matrix


Texture feature is a measure method about relationship among the pixels in local area, reflecting the changes of image space gray levels. This paper presents a texture feature extraction method based on regional average binary gray level difference co-occurrence matrix, which combined the texture structural analysis method with statistical method. Firstly, we calculate the average binary gray level difference of eight-neighbors of a pixel to get the average binary gray level difference image which expresses the variation pattern of the regional gray levels. Secondly, the regional co-occurrence matrix is constructed by using these average binary gray level differences. Finally, we extract the second-order statistic parameters reflecting the image texture feature from the regional co-occurrence matrix. Theoretical analysis and experimental results show that the image texture feature extraction method has certain accuracy and validity


Jian Yang

Jingfeng Guo


No supporting information for this article

Article statistics

Views: 200


PDF: 211